📄 stokes.h
字号:
} if (6 <= i && i <= 11) { // Map degree of freedom to element degree of freedom const unsigned int dof = i - 6; // Generate scalings const double scalings_y_0 = 1; const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y); const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y); // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_0_2 = 0.1111111111*psitilde_bs_0_1 + 1.666666667*y*psitilde_bs_0_1 - 0.5555555556*psitilde_bs_0_0; const double psitilde_bs_1_0 = 1; const double psitilde_bs_1_1 = 2.5*y + 1.5; const double psitilde_bs_2_0 = 1; // Compute basisvalues const double basisvalue0 = 0.7071067812*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; const double basisvalue1 = 1.732050808*psitilde_a_1*scalings_y_1*psitilde_bs_1_0; const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1; const double basisvalue3 = 2.738612788*psitilde_a_2*scalings_y_2*psitilde_bs_2_0; const double basisvalue4 = 2.121320344*psitilde_a_1*scalings_y_1*psitilde_bs_1_1; const double basisvalue5 = 1.224744871*psitilde_a_0*scalings_y_0*psitilde_bs_0_2; // Table(s) of coefficients const static double coefficients0[6][6] = \ {{0, -0.1732050808, -0.1, 0.1217161239, 0.09428090416, 0.0544331054}, {0, 0.1732050808, -0.1, 0.1217161239, -0.09428090416, 0.0544331054}, {0, 0, 0.2, 0, 0, 0.1632993162}, {0.4714045208, 0.2309401077, 0.1333333333, 0, 0.1885618083, -0.1632993162}, {0.4714045208, -0.2309401077, 0.1333333333, 0, -0.1885618083, -0.1632993162}, {0.4714045208, 0, -0.2666666667, -0.2434322478, 0, 0.0544331054}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[6][6] = \ {{0, 0, 0, 0, 0, 0}, {4.898979486, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 9.486832981, 0, 0, 0, 0}, {4, 0, 7.071067812, 0, 0, 0}, {0, 0, 0, 0, 0, 0}}; const static double dmats1[6][6] = \ {{0, 0, 0, 0, 0, 0}, {2.449489743, 0, 0, 0, 0, 0}, {4.242640687, 0, 0, 0, 0, 0}, {2.581988897, 4.74341649, -0.9128709292, 0, 0, 0}, {2, 6.123724357, 3.535533906, 0, 0, 0}, {-2.309401077, 0, 8.164965809, 0, 0, 0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; double coeff0_1 = 0; double coeff0_2 = 0; double coeff0_3 = 0; double coeff0_4 = 0; double coeff0_5 = 0; // Declare new coefficients double new_coeff0_0 = 0; double new_coeff0_1 = 0; double new_coeff0_2 = 0; double new_coeff0_3 = 0; double new_coeff0_4 = 0; double new_coeff0_5 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; new_coeff0_1 = coefficients0[dof][1]; new_coeff0_2 = coefficients0[dof][2]; new_coeff0_3 = coefficients0[dof][3]; new_coeff0_4 = coefficients0[dof][4]; new_coeff0_5 = coefficients0[dof][5]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; coeff0_1 = new_coeff0_1; coeff0_2 = new_coeff0_2; coeff0_3 = new_coeff0_3; coeff0_4 = new_coeff0_4; coeff0_5 = new_coeff0_5; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0] + coeff0_4*dmats0[4][0] + coeff0_5*dmats0[5][0]; new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1] + coeff0_4*dmats0[4][1] + coeff0_5*dmats0[5][1]; new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2] + coeff0_4*dmats0[4][2] + coeff0_5*dmats0[5][2]; new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3] + coeff0_4*dmats0[4][3] + coeff0_5*dmats0[5][3]; new_coeff0_4 = coeff0_0*dmats0[0][4] + coeff0_1*dmats0[1][4] + coeff0_2*dmats0[2][4] + coeff0_3*dmats0[3][4] + coeff0_4*dmats0[4][4] + coeff0_5*dmats0[5][4]; new_coeff0_5 = coeff0_0*dmats0[0][5] + coeff0_1*dmats0[1][5] + coeff0_2*dmats0[2][5] + coeff0_3*dmats0[3][5] + coeff0_4*dmats0[4][5] + coeff0_5*dmats0[5][5]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0] + coeff0_4*dmats1[4][0] + coeff0_5*dmats1[5][0]; new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1] + coeff0_4*dmats1[4][1] + coeff0_5*dmats1[5][1]; new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2] + coeff0_4*dmats1[4][2] + coeff0_5*dmats1[5][2]; new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3] + coeff0_4*dmats1[4][3] + coeff0_5*dmats1[5][3]; new_coeff0_4 = coeff0_0*dmats1[0][4] + coeff0_1*dmats1[1][4] + coeff0_2*dmats1[2][4] + coeff0_3*dmats1[3][4] + coeff0_4*dmats1[4][4] + coeff0_5*dmats1[5][4]; new_coeff0_5 = coeff0_0*dmats1[0][5] + coeff0_1*dmats1[1][5] + coeff0_2*dmats1[2][5] + coeff0_3*dmats1[3][5] + coeff0_4*dmats1[4][5] + coeff0_5*dmats1[5][5]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3 + new_coeff0_4*basisvalue4 + new_coeff0_5*basisvalue5; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[num_derivatives + row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { double values[2]; double coordinates[2]; // Nodal coordinates on reference cell static double X[12][2] = {{0, 0}, {1, 0}, {0, 1}, {0.5, 0.5}, {0, 0.5}, {0.5, 0}, {0, 0}, {1, 0}, {0, 1}, {0.5, 0.5}, {0, 0.5}, {0.5, 0}}; // Components for each dof static unsigned int components[12] = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1}; // Extract vertex coordinates const double * const * x = c.coordinates; // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0] - X[i][1]; const double w1 = X[i][0]; const double w2 = X[i][1]; // Compute affine mapping x = F(X) coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at coordinates f.evaluate(values, coordinates, c); // Pick component for evaluation return values[components[i]]; } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; vertex_values[2] = dof_values[2]; // Evaluate at vertices and use affine mapping vertex_values[3] = dof_values[6]; vertex_values[4] = dof_values[7]; vertex_values[5] = dof_values[8]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 2; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { switch ( i ) { case 0: return new StokesBilinearForm_finite_element_0_0_0(); break; case 1: return new StokesBilinearForm_finite_element_0_0_1(); break; } return 0; }};/// This class defines the interface for a finite element.class StokesBilinearForm_finite_element_0_1: public ufc::finite_element{public: /// Constructor StokesBilinearForm_finite_element_0_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~StokesBilinearForm_finite_element_0_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 1 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 3; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-09) x = -1.0; else x = 2.0 *x/(1.0 - y) - 1.0; y = 2.0*y - 1.0; // Reset values *values = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y); // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_1_0 = 1; // Compute basisvalues const double basisvalue0 = 0.7071067812*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; const double basisvalu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -