⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stokes.h

📁 finite element library for mathematic majored research
💻 H
📖 第 1 页 / 共 5 页
字号:
      const double psitilde_bs_1_1 = 2.5*y + 1.5;      const double psitilde_bs_2_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.7071067812*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.732050808*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;      const double basisvalue3 = 2.738612788*psitilde_a_2*scalings_y_2*psitilde_bs_2_0;      const double basisvalue4 = 2.121320344*psitilde_a_1*scalings_y_1*psitilde_bs_1_1;      const double basisvalue5 = 1.224744871*psitilde_a_0*scalings_y_0*psitilde_bs_0_2;          // Table(s) of coefficients      const static double coefficients0[6][6] =   \      {{0, -0.1732050808, -0.1, 0.1217161239, 0.09428090416, 0.0544331054},      {0, 0.1732050808, -0.1, 0.1217161239, -0.09428090416, 0.0544331054},      {0, 0, 0.2, 0, 0, 0.1632993162},      {0.4714045208, 0.2309401077, 0.1333333333, 0, 0.1885618083, -0.1632993162},      {0.4714045208, -0.2309401077, 0.1333333333, 0, -0.1885618083, -0.1632993162},      {0.4714045208, 0, -0.2666666667, -0.2434322478, 0, 0.0544331054}};          // Extract relevant coefficients      const double coeff0_0 =   coefficients0[dof][0];      const double coeff0_1 =   coefficients0[dof][1];      const double coeff0_2 =   coefficients0[dof][2];      const double coeff0_3 =   coefficients0[dof][3];      const double coeff0_4 =   coefficients0[dof][4];      const double coeff0_5 =   coefficients0[dof][5];          // Compute value(s)      values[0] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2 + coeff0_3*basisvalue3 + coeff0_4*basisvalue4 + coeff0_5*basisvalue5;    }        if (6 <= i && i <= 11)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 6;          // Generate scalings      const double scalings_y_0 = 1;      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);      const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y);          // Compute psitilde_a      const double psitilde_a_0 = 1;      const double psitilde_a_1 = x;      const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_0_2 = 0.1111111111*psitilde_bs_0_1 + 1.666666667*y*psitilde_bs_0_1 - 0.5555555556*psitilde_bs_0_0;      const double psitilde_bs_1_0 = 1;      const double psitilde_bs_1_1 = 2.5*y + 1.5;      const double psitilde_bs_2_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.7071067812*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.732050808*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;      const double basisvalue3 = 2.738612788*psitilde_a_2*scalings_y_2*psitilde_bs_2_0;      const double basisvalue4 = 2.121320344*psitilde_a_1*scalings_y_1*psitilde_bs_1_1;      const double basisvalue5 = 1.224744871*psitilde_a_0*scalings_y_0*psitilde_bs_0_2;          // Table(s) of coefficients      const static double coefficients0[6][6] =   \      {{0, -0.1732050808, -0.1, 0.1217161239, 0.09428090416, 0.0544331054},      {0, 0.1732050808, -0.1, 0.1217161239, -0.09428090416, 0.0544331054},      {0, 0, 0.2, 0, 0, 0.1632993162},      {0.4714045208, 0.2309401077, 0.1333333333, 0, 0.1885618083, -0.1632993162},      {0.4714045208, -0.2309401077, 0.1333333333, 0, -0.1885618083, -0.1632993162},      {0.4714045208, 0, -0.2666666667, -0.2434322478, 0, 0.0544331054}};          // Extract relevant coefficients      const double coeff0_0 =   coefficients0[dof][0];      const double coeff0_1 =   coefficients0[dof][1];      const double coeff0_2 =   coefficients0[dof][2];      const double coeff0_3 =   coefficients0[dof][3];      const double coeff0_4 =   coefficients0[dof][4];      const double coeff0_5 =   coefficients0[dof][5];          // Compute value(s)      values[1] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2 + coeff0_3*basisvalue3 + coeff0_4*basisvalue4 + coeff0_5*basisvalue5;    }      }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Get coordinates and map to the reference (UFC) element    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\                element_coordinates[0][0]*element_coordinates[2][1] +\                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\                element_coordinates[1][0]*element_coordinates[0][1] -\                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-09)      x = -1.0;    else      x = 2.0 *x/(1.0 - y) - 1.0;    y = 2.0*y - 1.0;        // Compute number of derivatives    unsigned int num_derivatives = 1;        for (unsigned int j = 0; j < n; j++)      num_derivatives *= 2;            // Declare pointer to two dimensional array that holds combinations of derivatives and initialise    unsigned int **combinations = new unsigned int *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      combinations[j] = new unsigned int [n];      for (unsigned int k = 0; k < n; k++)        combinations[j][k] = 0;    }            // Generate combinations of derivatives    for (unsigned int row = 1; row < num_derivatives; row++)    {      for (unsigned int num = 0; num < row; num++)      {        for (unsigned int col = n-1; col+1 > 0; col--)        {          if (combinations[row][col] + 1 > 1)            combinations[row][col] = 0;          else          {            combinations[row][col] += 1;            break;          }        }      }    }        // Compute inverse of Jacobian    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};        // Declare transformation matrix    // Declare pointer to two dimensional array and initialise    double **transform = new double *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      transform[j] = new double [num_derivatives];      for (unsigned int k = 0; k < num_derivatives; k++)        transform[j][k] = 1;    }        // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        for (unsigned int k = 0; k < n; k++)          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];      }    }        // Reset values    for (unsigned int j = 0; j < 2*num_derivatives; j++)      values[j] = 0;        if (0 <= i && i <= 5)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i;          // Generate scalings      const double scalings_y_0 = 1;      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);      const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y);          // Compute psitilde_a      const double psitilde_a_0 = 1;      const double psitilde_a_1 = x;      const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_0_2 = 0.1111111111*psitilde_bs_0_1 + 1.666666667*y*psitilde_bs_0_1 - 0.5555555556*psitilde_bs_0_0;      const double psitilde_bs_1_0 = 1;      const double psitilde_bs_1_1 = 2.5*y + 1.5;      const double psitilde_bs_2_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.7071067812*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.732050808*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;      const double basisvalue3 = 2.738612788*psitilde_a_2*scalings_y_2*psitilde_bs_2_0;      const double basisvalue4 = 2.121320344*psitilde_a_1*scalings_y_1*psitilde_bs_1_1;      const double basisvalue5 = 1.224744871*psitilde_a_0*scalings_y_0*psitilde_bs_0_2;          // Table(s) of coefficients      const static double coefficients0[6][6] =   \      {{0, -0.1732050808, -0.1, 0.1217161239, 0.09428090416, 0.0544331054},      {0, 0.1732050808, -0.1, 0.1217161239, -0.09428090416, 0.0544331054},      {0, 0, 0.2, 0, 0, 0.1632993162},      {0.4714045208, 0.2309401077, 0.1333333333, 0, 0.1885618083, -0.1632993162},      {0.4714045208, -0.2309401077, 0.1333333333, 0, -0.1885618083, -0.1632993162},      {0.4714045208, 0, -0.2666666667, -0.2434322478, 0, 0.0544331054}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[6][6] =   \      {{0, 0, 0, 0, 0, 0},      {4.898979486, 0, 0, 0, 0, 0},      {0, 0, 0, 0, 0, 0},      {0, 9.486832981, 0, 0, 0, 0},      {4, 0, 7.071067812, 0, 0, 0},      {0, 0, 0, 0, 0, 0}};          const static double dmats1[6][6] =   \      {{0, 0, 0, 0, 0, 0},      {2.449489743, 0, 0, 0, 0, 0},      {4.242640687, 0, 0, 0, 0, 0},      {2.581988897, 4.74341649, -0.9128709292, 0, 0, 0},      {2, 6.123724357, 3.535533906, 0, 0, 0},      {-2.309401077, 0, 8.164965809, 0, 0, 0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;      double coeff0_1 = 0;      double coeff0_2 = 0;      double coeff0_3 = 0;      double coeff0_4 = 0;      double coeff0_5 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;      double new_coeff0_1 = 0;      double new_coeff0_2 = 0;      double new_coeff0_3 = 0;      double new_coeff0_4 = 0;      double new_coeff0_5 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];        new_coeff0_1 = coefficients0[dof][1];        new_coeff0_2 = coefficients0[dof][2];        new_coeff0_3 = coefficients0[dof][3];        new_coeff0_4 = coefficients0[dof][4];        new_coeff0_5 = coefficients0[dof][5];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;          coeff0_1 = new_coeff0_1;          coeff0_2 = new_coeff0_2;          coeff0_3 = new_coeff0_3;          coeff0_4 = new_coeff0_4;          coeff0_5 = new_coeff0_5;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0] + coeff0_4*dmats0[4][0] + coeff0_5*dmats0[5][0];            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1] + coeff0_4*dmats0[4][1] + coeff0_5*dmats0[5][1];            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2] + coeff0_4*dmats0[4][2] + coeff0_5*dmats0[5][2];            new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3] + coeff0_4*dmats0[4][3] + coeff0_5*dmats0[5][3];            new_coeff0_4 = coeff0_0*dmats0[0][4] + coeff0_1*dmats0[1][4] + coeff0_2*dmats0[2][4] + coeff0_3*dmats0[3][4] + coeff0_4*dmats0[4][4] + coeff0_5*dmats0[5][4];            new_coeff0_5 = coeff0_0*dmats0[0][5] + coeff0_1*dmats0[1][5] + coeff0_2*dmats0[2][5] + coeff0_3*dmats0[3][5] + coeff0_4*dmats0[4][5] + coeff0_5*dmats0[5][5];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0] + coeff0_4*dmats1[4][0] + coeff0_5*dmats1[5][0];            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1] + coeff0_4*dmats1[4][1] + coeff0_5*dmats1[5][1];            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2] + coeff0_4*dmats1[4][2] + coeff0_5*dmats1[5][2];            new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3] + coeff0_4*dmats1[4][3] + coeff0_5*dmats1[5][3];            new_coeff0_4 = coeff0_0*dmats1[0][4] + coeff0_1*dmats1[1][4] + coeff0_2*dmats1[2][4] + coeff0_3*dmats1[3][4] + coeff0_4*dmats1[4][4] + coeff0_5*dmats1[5][4];            new_coeff0_5 = coeff0_0*dmats1[0][5] + coeff0_1*dmats1[1][5] + coeff0_2*dmats1[2][5] + coeff0_3*dmats1[3][5] + coeff0_4*dmats1[4][5] + coeff0_5*dmats1[5][5];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3 + new_coeff0_4*basisvalue4 + new_coeff0_5*basisvalue5;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives and transform      for (unsigned int row = 0; row < num_derivatives; row++)      {        delete [] combinations[row];        delete [] transform[row];      }          delete [] combinations;      delete [] transform;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -