📄 heat.h
字号:
/// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 3; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 2; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[0][0]; dofs[1] = c.entity_indices[0][1]; dofs[2] = c.entity_indices[0][2]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: dofs[0] = 1; dofs[1] = 2; break; case 1: dofs[0] = 0; dofs[1] = 2; break; case 2: dofs[0] = 0; dofs[1] = 1; break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[1][0] = x[1][0]; coordinates[1][1] = x[1][1]; coordinates[2][0] = x[2][0]; coordinates[2][1] = x[2][1]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new HeatBilinearForm_dof_map_1(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class HeatBilinearForm_dof_map_2: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor HeatBilinearForm_dof_map_2() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~HeatBilinearForm_dof_map_2() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Lagrange finite element of degree 1 on a triangle"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return true; break; case 1: return false; break; case 2: return false; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[0]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 3; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 2; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[0][0]; dofs[1] = c.entity_indices[0][1]; dofs[2] = c.entity_indices[0][2]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: dofs[0] = 1; dofs[1] = 2; break; case 1: dofs[0] = 0; dofs[1] = 2; break; case 2: dofs[0] = 0; dofs[1] = 1; break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[1][0] = x[1][0]; coordinates[1][1] = x[1][1]; coordinates[2][0] = x[2][0]; coordinates[2][1] = x[2][1]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new HeatBilinearForm_dof_map_2(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class HeatBilinearForm_dof_map_3: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor HeatBilinearForm_dof_map_3() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~HeatBilinearForm_dof_map_3() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 0 on a triangle"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[2]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 1; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[2][0]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = 0.3333333333*x[0][0] + 0.3333333333*x[1][0] + 0.3333333333*x[2][0]; coordinates[0][1] = 0.3333333333*x[0][1] + 0.3333333333*x[1][1] + 0.3333333333*x[2][1]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new HeatBilinearForm_dof_map_3(); }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class HeatBilinearForm_cell_integral_0: public ufc::cell_integral{public: /// Constructor HeatBilinearForm_cell_integral_0() : ufc::cell_integral() { // Do nothing } /// Destructor virtual ~HeatBilinearForm_cell_integral_0() { // Do nothing } /// Tabulate the tensor for the contribution from a local cell virtual void tabulate_tensor(double* A, const double * const * w, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian const double Jinv_00 = J_11 / detJ; const double Jinv_01 = -J_01 / detJ; const double Jinv_10 = -J_10 / detJ; const double Jinv_11 = J_00 / detJ; // Set scale factor const double det = std::abs(detJ); // Compute coefficients const double c1_1_0_0 = w[1][0]; const double c0_1_1_0 = w[0][0]; const double c0_1_1_1 = w[0][1]; const double c0_1_1_2 = w[0][2]; // Compute geometry tensors const double G0_ = det; const double G1_0_0_0_0 = det*c1_1_0_0*c0_1_1_0*(Jinv_00*Jinv_00 + Jinv_01*Jinv_01); const double G1_0_0_0_1 = det*c1_1_0_0*c0_1_1_0*(Jinv_00*Jinv_10 + Jinv_01*Jinv_11); const double G1_0_0_1_0 = det*c1_1_0_0*c0_1_1_0*(Jinv_10*Jinv_00 + Jinv_11*Jinv_01); const double G1_0_0_1_1 = det*c1_1_0_0*c0_1_1_0*(Jinv_10*Jinv_10 + Jinv_11*Jinv_11); const double G1_0_1_0_0 = det*c1_1_0_0*c0_1_1_1*(Jinv_00*Jinv_00 + Jinv_01*Jinv_01); const double G1_0_1_0_1 = det*c1_1_0_0*c0_1_1_1*(Jinv_00*Jinv_10 + Jinv_01*Jinv_11); const double G1_0_1_1_0 = det*c1_1_0_0*c0_1_1_1*(Jinv_10*Jinv_00 + Jinv_11*Jinv_01); const double G1_0_1_1_1 = det*c1_1_0_0*c0_1_1_1*(Jinv_10*Jinv_10 + Jinv_11*Jinv_11); const double G1_0_2_0_0 = det*c1_1_0_0*c0_1_1_2*(Jinv_00*Jinv_00 + Jinv_01*Jinv_01); const double G1_0_2_0_1 = det*c1_1_0_0*c0_1_1_2*(Jinv_00*Jinv_10 + Jinv_01*Jinv_11); const double G1_0_2_1_0 = det*c1_1_0_0*c0_1_1_2*(Jinv_10*Jinv_00 + Jinv_11*Jinv_01); const double G1_0_2_1_1 = det*c1_1_0_0*c0_1_1_2*(Jinv_10*Jinv_10 + Jinv
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -