📄 mixedpoisson.h
字号:
{-0.9428090416, 0, -0.6666666667}, {-0.4714045208, 0.8660254038, 0.1666666667}, {-0.4714045208, -0.8660254038, 0.1666666667}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; const double coeff0_1 = coefficients0[dof][1]; const double coeff0_2 = coefficients0[dof][2]; const double coeff1_0 = coefficients1[dof][0]; const double coeff1_1 = coefficients1[dof][1]; const double coeff1_2 = coefficients1[dof][2]; // Compute value(s) const double tmp0_0 = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2; const double tmp0_1 = coeff1_0*basisvalue0 + coeff1_1*basisvalue1 + coeff1_2*basisvalue2; // Using Piola transform to map values back to the physical element values[0] = (1.0/detJ)*(J_00*tmp0_0 + J_01*tmp0_1); values[1] = (1.0/detJ)*(J_10*tmp0_0 + J_11*tmp0_1); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-09) x = -1.0; else x = 2.0 *x/(1.0 - y) - 1.0; y = 2.0*y - 1.0; // Compute number of derivatives unsigned int num_derivatives = 1; for (unsigned int j = 0; j < n; j++) num_derivatives *= 2; // Declare pointer to two dimensional array that holds combinations of derivatives and initialise unsigned int **combinations = new unsigned int *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { combinations[j] = new unsigned int [n]; for (unsigned int k = 0; k < n; k++) combinations[j][k] = 0; } // Generate combinations of derivatives for (unsigned int row = 1; row < num_derivatives; row++) { for (unsigned int num = 0; num < row; num++) { for (unsigned int col = n-1; col+1 > 0; col--) { if (combinations[row][col] + 1 > 1) combinations[row][col] = 0; else { combinations[row][col] += 1; break; } } } } // Compute inverse of Jacobian const double Jinv[2][2] = {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}}; // Declare transformation matrix // Declare pointer to two dimensional array and initialise double **transform = new double *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { transform[j] = new double [num_derivatives]; for (unsigned int k = 0; k < num_derivatives; k++) transform[j][k] = 1; } // Construct transformation matrix for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { for (unsigned int k = 0; k < n; k++) transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; } } // Reset values for (unsigned int j = 0; j < 2*num_derivatives; j++) values[j] = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y); // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_1_0 = 1; // Compute basisvalues const double basisvalue0 = 0.7071067812*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; const double basisvalue1 = 1.732050808*psitilde_a_1*scalings_y_1*psitilde_bs_1_0; const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1; // Table(s) of coefficients const static double coefficients0[6][3] = \ {{0.9428090416, 0.5773502692, -0.3333333333}, {-0.4714045208, -0.2886751346, 0.1666666667}, {0.4714045208, -0.5773502692, -0.6666666667}, {0.4714045208, 0.2886751346, 0.8333333333}, {-0.4714045208, -0.2886751346, 0.1666666667}, {0.9428090416, 0.5773502692, -0.3333333333}}; const static double coefficients1[6][3] = \ {{-0.4714045208, 0, -0.3333333333}, {0.9428090416, 0, 0.6666666667}, {0.4714045208, 0, 0.3333333333}, {-0.9428090416, 0, -0.6666666667}, {-0.4714045208, 0.8660254038, 0.1666666667}, {-0.4714045208, -0.8660254038, 0.1666666667}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[3][3] = \ {{0, 0, 0}, {4.898979486, 0, 0}, {0, 0, 0}}; const static double dmats1[3][3] = \ {{0, 0, 0}, {2.449489743, 0, 0}, {4.242640687, 0, 0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [2*num_derivatives]; // Declare coefficients double coeff0_0 = 0; double coeff0_1 = 0; double coeff0_2 = 0; double coeff1_0 = 0; double coeff1_1 = 0; double coeff1_2 = 0; // Declare new coefficients double new_coeff0_0 = 0; double new_coeff0_1 = 0; double new_coeff0_2 = 0; double new_coeff1_0 = 0; double new_coeff1_1 = 0; double new_coeff1_2 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; new_coeff0_1 = coefficients0[dof][1]; new_coeff0_2 = coefficients0[dof][2]; new_coeff1_0 = coefficients1[dof][0]; new_coeff1_1 = coefficients1[dof][1]; new_coeff1_2 = coefficients1[dof][2]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; coeff0_1 = new_coeff0_1; coeff0_2 = new_coeff0_2; coeff1_0 = new_coeff1_0; coeff1_1 = new_coeff1_1; coeff1_2 = new_coeff1_2; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0]; new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1]; new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2]; new_coeff1_0 = coeff1_0*dmats0[0][0] + coeff1_1*dmats0[1][0] + coeff1_2*dmats0[2][0]; new_coeff1_1 = coeff1_0*dmats0[0][1] + coeff1_1*dmats0[1][1] + coeff1_2*dmats0[2][1]; new_coeff1_2 = coeff1_0*dmats0[0][2] + coeff1_1*dmats0[1][2] + coeff1_2*dmats0[2][2]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0]; new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1]; new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2]; new_coeff1_0 = coeff1_0*dmats1[0][0] + coeff1_1*dmats1[1][0] + coeff1_2*dmats1[2][0]; new_coeff1_1 = coeff1_0*dmats1[0][1] + coeff1_1*dmats1[1][1] + coeff1_2*dmats1[2][1]; new_coeff1_2 = coeff1_0*dmats1[0][2] + coeff1_1*dmats1[1][2] + coeff1_2*dmats1[2][2]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues // Correct values by the Piola transform const double tmp0_0 = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2; const double tmp0_1 = new_coeff1_0*basisvalue0 + new_coeff1_1*basisvalue1 + new_coeff1_2*basisvalue2; derivatives[deriv_num] = (1.0/detJ)*(J_00*tmp0_0 + J_01*tmp0_1); derivatives[num_derivatives + deriv_num] = (1.0/detJ)*(J_10*tmp0_0 + J_11*tmp0_1); } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; values[num_derivatives + row] += transform[row][col]*derivatives[num_derivatives + col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("evaluate_dof not implemented for this type of element"); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Evaluate at vertices and use Piola mapping vertex_values[0] = (1.0/detJ)*(dof_values[2]*2*J_00 + dof_values[3]*J_00 + dof_values[4]*(-2*J_01) + dof_values[5]*J_01); vertex_values[1] = (1.0/detJ)*(dof_values[0]*2*J_00 + dof_values[1]*J_00 + dof_values[4]*(J_00 + J_01) + dof_values[5]*(2*J_00 - 2*J_01)); vertex_values[2] = (1.0/detJ)*(dof_values[0]*J_01 + dof_values[1]*2*J_01 + dof_values[2]*(J_00 + J_01) + dof_values[3]*(2*J_00 - 2*J_01)); vertex_values[3] = (1.0/detJ)*(dof_values[2]*2*J_10 + dof_values[3]*J_10 + dof_values[4]*(-2*J_11) + dof_values[5]*J_11); vertex_values[4] = (1.0/detJ)*(dof_values[0]*2*J_10 + dof_values[1]*J_10 + dof_values[4]*(J_10 + J_11) + dof_values[5]*(2*J_10 - 2*J_11)); vertex_values[5] = (1.0/detJ)*(dof_values[0]*J_11 + dof_values[1]*2*J_11 + dof_values[2]*(J_10 + J_11) + dof_values[3]*(2*J_10 - 2*J_11)); } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new MixedPoissonBilinearForm_finite_element_1_0(); }};/// This class defines the interface for a finite element.class MixedPoissonBilinearForm_finite_element_1_1: public ufc::finite_element{public: /// Constructor MixedPoissonBilinearForm_finite_element_1_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~MixedPoissonBilinearForm_finite_element_1_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Discontinuous Lagrange finite element of degree 0 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 1; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinate
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -