⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mixedpoisson.h

📁 finite element library for mathematic majored research
💻 H
📖 第 1 页 / 共 5 页
字号:
      const static double dmats1[3][3] =   \      {{0, 0, 0},      {2.449489743, 0, 0},      {4.242640687, 0, 0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [2*num_derivatives];          // Declare coefficients      double coeff0_0 = 0;      double coeff0_1 = 0;      double coeff0_2 = 0;      double coeff1_0 = 0;      double coeff1_1 = 0;      double coeff1_2 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;      double new_coeff0_1 = 0;      double new_coeff0_2 = 0;      double new_coeff1_0 = 0;      double new_coeff1_1 = 0;      double new_coeff1_2 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];        new_coeff0_1 = coefficients0[dof][1];        new_coeff0_2 = coefficients0[dof][2];        new_coeff1_0 = coefficients1[dof][0];        new_coeff1_1 = coefficients1[dof][1];        new_coeff1_2 = coefficients1[dof][2];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;          coeff0_1 = new_coeff0_1;          coeff0_2 = new_coeff0_2;          coeff1_0 = new_coeff1_0;          coeff1_1 = new_coeff1_1;          coeff1_2 = new_coeff1_2;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];            new_coeff1_0 = coeff1_0*dmats0[0][0] + coeff1_1*dmats0[1][0] + coeff1_2*dmats0[2][0];            new_coeff1_1 = coeff1_0*dmats0[0][1] + coeff1_1*dmats0[1][1] + coeff1_2*dmats0[2][1];            new_coeff1_2 = coeff1_0*dmats0[0][2] + coeff1_1*dmats0[1][2] + coeff1_2*dmats0[2][2];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];            new_coeff1_0 = coeff1_0*dmats1[0][0] + coeff1_1*dmats1[1][0] + coeff1_2*dmats1[2][0];            new_coeff1_1 = coeff1_0*dmats1[0][1] + coeff1_1*dmats1[1][1] + coeff1_2*dmats1[2][1];            new_coeff1_2 = coeff1_0*dmats1[0][2] + coeff1_1*dmats1[1][2] + coeff1_2*dmats1[2][2];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        // Correct values by the Piola transform        const double tmp0_0 = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;        const double tmp0_1 = new_coeff1_0*basisvalue0 + new_coeff1_1*basisvalue1 + new_coeff1_2*basisvalue2;        derivatives[deriv_num] = (1.0/detJ)*(J_00*tmp0_0 + J_01*tmp0_1);        derivatives[num_derivatives + deriv_num] = (1.0/detJ)*(J_10*tmp0_0 + J_11*tmp0_1);      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[row] += transform[row][col]*derivatives[col];          values[num_derivatives + row] += transform[row][col]*derivatives[num_derivatives + col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives and transform      for (unsigned int row = 0; row < num_derivatives; row++)      {        delete [] combinations[row];        delete [] transform[row];      }          delete [] combinations;      delete [] transform;    }        if (6 <= i && i <= 6)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 6;          // Generate scalings      const double scalings_y_0 = 1;          // Compute psitilde_a      const double psitilde_a_0 = 1;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.7071067812*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;          // Table(s) of coefficients      const static double coefficients0[1][1] =   \      {{1.414213562}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[1][1] =   \      {{0}};          const static double dmats1[1][1] =   \      {{0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[2*num_derivatives + row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives and transform      for (unsigned int row = 0; row < num_derivatives; row++)      {        delete [] combinations[row];        delete [] transform[row];      }          delete [] combinations;      delete [] transform;    }      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    throw std::runtime_error("evaluate_dof not implemented for this type of element");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];          // Compute determinant of Jacobian    double detJ = J_00*J_11 - J_01*J_10;          // Compute inverse of Jacobian    // Evaluate at vertices and use Piola mapping    vertex_values[0] = (1.0/detJ)*(dof_values[2]*2*J_00 + dof_values[3]*J_00 + dof_values[4]*(-2*J_01) + dof_values[5]*J_01);    vertex_values[1] = (1.0/detJ)*(dof_values[0]*2*J_00 + dof_values[1]*J_00 + dof_values[4]*(J_00 + J_01) + dof_values[5]*(2*J_00 - 2*J_01));    vertex_values[2] = (1.0/detJ)*(dof_values[0]*J_01 + dof_values[1]*2*J_01 + dof_values[2]*(J_00 + J_01) + dof_values[3]*(2*J_00 - 2*J_01));    vertex_values[3] = (1.0/detJ)*(dof_values[2]*2*J_10 + dof_values[3]*J_10 + dof_values[4]*(-2*J_11) + dof_values[5]*J_11);    vertex_values[4] = (1.0/detJ)*(dof_values[0]*2*J_10 + dof_values[1]*J_10 + dof_values[4]*(J_10 + J_11) + dof_values[5]*(2*J_10 - 2*J_11));    vertex_values[5] = (1.0/detJ)*(dof_values[0]*J_11 + dof_values[1]*2*J_11 + dof_values[2]*(J_10 + J_11) + dof_values[3]*(2*J_10 - 2*J_11));    // Evaluate at vertices and use affine mapping    vertex_values[6] = dof_values[6];    vertex_values[7] = dof_values[6];    vertex_values[8] = dof_values[6];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 2;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new MixedPoissonBilinearForm_finite_element_0_0();      break;    case 1:      return new MixedPoissonBilinearForm_finite_element_0_1();      break;    }    return 0;  }};/// This class defines the interface for a finite element.class MixedPoissonBilinearForm_finite_element_1_0: public ufc::finite_element{public:  /// Constructor  MixedPoissonBilinearForm_finite_element_1_0() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~MixedPoissonBilinearForm_finite_element_1_0()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Brezzi-Douglas-Marini finite element of degree 1 on a triangle";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::triangle;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 6;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 1;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 2;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Get coordinates and map to the reference (UFC) element    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\                element_coordinates[0][0]*element_coordinates[2][1] +\                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\                element_coordinates[1][0]*element_coordinates[0][1] -\                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-09)      x = -1.0;    else      x = 2.0 *x/(1.0 - y) - 1.0;    y = 2.0*y - 1.0;        // Reset values    values[0] = 0;    values[1] = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);        // Compute psitilde_a    const double psitilde_a_0 = 1;    const double psitilde_a_1 = x;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;    const double psitilde_bs_0_1 = 1.5*y + 0.5;    const double psitilde_bs_1_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.7071067812*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;    const double basisvalue1 = 1.732050808*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;        // Table(s) of coefficients    const static double coefficients0[6][3] = \    {{0.9428090416, 0.5773502692, -0.3333333333},    {-0.4714045208, -0.2886751346, 0.1666666667},    {0.4714045208, -0.5773502692, -0.6666666667},    {0.4714045208, 0.2886751346, 0.8333333333},    {-0.4714045208, -0.2886751346, 0.1666666667},    {0.9428090416, 0.5773502692, -0.3333333333}};        const static double coefficients1[6][3] = \    {{-0.4714045208, 0, -0.3333333333},    {0.9428090416, 0, 0.6666666667},    {0.4714045208, 0, 0.3333333333},

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -