📄 p5tri.h
字号:
// Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { double values[1]; double coordinates[2]; // Nodal coordinates on reference cell static double X[21][2] = {{0, 0}, {1, 0}, {0, 1}, {0.8, 0.2}, {0.6, 0.4}, {0.4, 0.6}, {0.2, 0.8}, {0, 0.2}, {0, 0.4}, {0, 0.6}, {0, 0.8}, {0.2, 0}, {0.4, 0}, {0.6, 0}, {0.8, 0}, {0.2, 0.2}, {0.4, 0.2}, {0.6, 0.2}, {0.2, 0.4}, {0.4, 0.4}, {0.2, 0.6}}; // Components for each dof static unsigned int components[21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // Extract vertex coordinates const double * const * x = c.coordinates; // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0] - X[i][1]; const double w1 = X[i][0]; const double w2 = X[i][1]; // Compute affine mapping x = F(X) coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at coordinates f.evaluate(values, coordinates, c); // Pick component for evaluation return values[components[i]]; } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; vertex_values[2] = dof_values[2]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new P5tri_finite_element_0(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class P5tri_dof_map_0: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor P5tri_dof_map_0() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~P5tri_dof_map_0() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Lagrange finite element of degree 5 on a triangle"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return true; break; case 1: return true; break; case 2: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[0] + 4*m.num_entities[1] + 6*m.num_entities[2]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 21; } /// Re
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -