⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 p5tri.h

📁 finite element library for mathematic majored research
💻 H
📖 第 1 页 / 共 5 页
字号:
    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives and transform    for (unsigned int row = 0; row < num_derivatives; row++)    {      delete [] combinations[row];      delete [] transform[row];    }        delete [] combinations;    delete [] transform;  }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    double values[1];    double coordinates[2];        // Nodal coordinates on reference cell    static double X[21][2] = {{0, 0}, {1, 0}, {0, 1}, {0.8, 0.2}, {0.6, 0.4}, {0.4, 0.6}, {0.2, 0.8}, {0, 0.2}, {0, 0.4}, {0, 0.6}, {0, 0.8}, {0.2, 0}, {0.4, 0}, {0.6, 0}, {0.8, 0}, {0.2, 0.2}, {0.4, 0.2}, {0.6, 0.2}, {0.2, 0.4}, {0.4, 0.4}, {0.2, 0.6}};        // Components for each dof    static unsigned int components[21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};        // Extract vertex coordinates    const double * const * x = c.coordinates;        // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0] - X[i][1];    const double w1 = X[i][0];    const double w2 = X[i][1];        // Compute affine mapping x = F(X)    coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];    coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];        // Evaluate function at coordinates    f.evaluate(values, coordinates, c);        // Pick component for evaluation    return values[components[i]];  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];    vertex_values[2] = dof_values[2];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new P5tri_finite_element_0();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class P5tri_dof_map_0: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  P5tri_dof_map_0() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~P5tri_dof_map_0()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Lagrange finite element of degree 5 on a triangle";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return true;      break;    case 1:      return true;      break;    case 2:      return true;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = m.num_entities[0] + 4*m.num_entities[1] + 6*m.num_entities[2];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 21;  }  /// Re

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -