📄 optimization.h
字号:
const double basisvalue5 = 1.224744871*psitilde_a_0*scalings_y_0*psitilde_bs_0_2; const double basisvalue6 = 3.741657387*psitilde_a_3*scalings_y_3*psitilde_bs_3_0; const double basisvalue7 = 3.16227766*psitilde_a_2*scalings_y_2*psitilde_bs_2_1; const double basisvalue8 = 2.449489743*psitilde_a_1*scalings_y_1*psitilde_bs_1_2; const double basisvalue9 = 1.414213562*psitilde_a_0*scalings_y_0*psitilde_bs_0_3; // Table(s) of coefficients const static double coefficients0[10][10] = \ {{0.04714045208, -0.02886751346, -0.01666666667, 0.07824607964, 0.06060915267, 0.03499271061, -0.06013377943, -0.05082231954, -0.03936679944, -0.02272843225}, {0.04714045208, 0.02886751346, -0.01666666667, 0.07824607964, -0.06060915267, 0.03499271061, 0.06013377943, -0.05082231954, 0.03936679944, -0.02272843225}, {0.04714045208, 0, 0.03333333333, 0, 0, 0.1049781318, 0, 0, 0, 0.09091372901}, {0.1060660172, 0.2598076211, -0.15, 0.1173691195, 0.06060915267, -0.07873359888, 0, 0.1016446391, -0.1312226648, 0.09091372901}, {0.1060660172, 0, 0.3, 0, 0.1515228817, 0.02624453296, 0, 0, 0.1312226648, -0.1363705935}, {0.1060660172, -0.2598076211, -0.15, 0.1173691195, -0.06060915267, -0.07873359888, 0, 0.1016446391, 0.1312226648, 0.09091372901}, {0.1060660172, 0, 0.3, 0, -0.1515228817, 0.02624453296, 0, 0, -0.1312226648, -0.1363705935}, {0.1060660172, -0.2598076211, -0.15, -0.07824607964, 0.09091372901, 0.09622995418, 0.1804013383, 0.05082231954, -0.01312226648, -0.02272843225}, {0.1060660172, 0.2598076211, -0.15, -0.07824607964, -0.09091372901, 0.09622995418, -0.1804013383, 0.05082231954, 0.01312226648, -0.02272843225}, {0.6363961031, 0, 0, -0.2347382389, 0, -0.2624453296, 0, -0.2032892782, 0, 0.09091372901}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[10][10] = \ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {4.898979486, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 9.486832981, 0, 0, 0, 0, 0, 0, 0, 0}, {4, 0, 7.071067812, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {5.291502622, 0, -2.993325909, 13.66260102, 0, 0.6110100927, 0, 0, 0, 0}, {0, 4.38178046, 0, 0, 12.52198067, 0, 0, 0, 0, 0}, {3.464101615, 0, 7.838367177, 0, 0, 8.4, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; const static double dmats1[10][10] = \ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {2.449489743, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {4.242640687, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {2.581988897, 4.74341649, -0.9128709292, 0, 0, 0, 0, 0, 0, 0}, {2, 6.123724357, 3.535533906, 0, 0, 0, 0, 0, 0, 0}, {-2.309401077, 0, 8.164965809, 0, 0, 0, 0, 0, 0, 0}, {2.645751311, 5.184592559, -1.496662955, 6.831300511, -1.058300524, 0.3055050463, 0, 0, 0, 0}, {2.236067977, 2.19089023, 2.529822128, 8.082903769, 6.260990337, -1.807392228, 0, 0, 0, 0}, {1.732050808, -5.091168825, 3.919183588, 0, 9.699484522, 4.2, 0, 0, 0, 0}, {5, 0, -2.828427125, 0, 0, 12.12435565, 0, 0, 0, 0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; double coeff0_1 = 0; double coeff0_2 = 0; double coeff0_3 = 0; double coeff0_4 = 0; double coeff0_5 = 0; double coeff0_6 = 0; double coeff0_7 = 0; double coeff0_8 = 0; double coeff0_9 = 0; // Declare new coefficients double new_coeff0_0 = 0; double new_coeff0_1 = 0; double new_coeff0_2 = 0; double new_coeff0_3 = 0; double new_coeff0_4 = 0; double new_coeff0_5 = 0; double new_coeff0_6 = 0; double new_coeff0_7 = 0; double new_coeff0_8 = 0; double new_coeff0_9 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; new_coeff0_1 = coefficients0[dof][1]; new_coeff0_2 = coefficients0[dof][2]; new_coeff0_3 = coefficients0[dof][3]; new_coeff0_4 = coefficients0[dof][4]; new_coeff0_5 = coefficients0[dof][5]; new_coeff0_6 = coefficients0[dof][6]; new_coeff0_7 = coefficients0[dof][7]; new_coeff0_8 = coefficients0[dof][8]; new_coeff0_9 = coefficients0[dof][9]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; coeff0_1 = new_coeff0_1; coeff0_2 = new_coeff0_2; coeff0_3 = new_coeff0_3; coeff0_4 = new_coeff0_4; coeff0_5 = new_coeff0_5; coeff0_6 = new_coeff0_6; coeff0_7 = new_coeff0_7; coeff0_8 = new_coeff0_8; coeff0_9 = new_coeff0_9; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0] + coeff0_4*dmats0[4][0] + coeff0_5*dmats0[5][0] + coeff0_6*dmats0[6][0] + coeff0_7*dmats0[7][0] + coeff0_8*dmats0[8][0] + coeff0_9*dmats0[9][0]; new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1] + coeff0_4*dmats0[4][1] + coeff0_5*dmats0[5][1] + coeff0_6*dmats0[6][1] + coeff0_7*dmats0[7][1] + coeff0_8*dmats0[8][1] + coeff0_9*dmats0[9][1]; new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2] + coeff0_4*dmats0[4][2] + coeff0_5*dmats0[5][2] + coeff0_6*dmats0[6][2] + coeff0_7*dmats0[7][2] + coeff0_8*dmats0[8][2] + coeff0_9*dmats0[9][2]; new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3] + coeff0_4*dmats0[4][3] + coeff0_5*dmats0[5][3] + coeff0_6*dmats0[6][3] + coeff0_7*dmats0[7][3] + coeff0_8*dmats0[8][3] + coeff0_9*dmats0[9][3]; new_coeff0_4 = coeff0_0*dmats0[0][4] + coeff0_1*dmats0[1][4] + coeff0_2*dmats0[2][4] + coeff0_3*dmats0[3][4] + coeff0_4*dmats0[4][4] + coeff0_5*dmats0[5][4] + coeff0_6*dmats0[6][4] + coeff0_7*dmats0[7][4] + coeff0_8*dmats0[8][4] + coeff0_9*dmats0[9][4]; new_coeff0_5 = coeff0_0*dmats0[0][5] + coeff0_1*dmats0[1][5] + coeff0_2*dmats0[2][5] + coeff0_3*dmats0[3][5] + coeff0_4*dmats0[4][5] + coeff0_5*dmats0[5][5] + coeff0_6*dmats0[6][5] + coeff0_7*dmats0[7][5] + coeff0_8*dmats0[8][5] + coeff0_9*dmats0[9][5]; new_coeff0_6 = coeff0_0*dmats0[0][6] + coeff0_1*dmats0[1][6] + coeff0_2*dmats0[2][6] + coeff0_3*dmats0[3][6] + coeff0_4*dmats0[4][6] + coeff0_5*dmats0[5][6] + coeff0_6*dmats0[6][6] + coeff0_7*dmats0[7][6] + coeff0_8*dmats0[8][6] + coeff0_9*dmats0[9][6]; new_coeff0_7 = coeff0_0*dmats0[0][7] + coeff0_1*dmats0[1][7] + coeff0_2*dmats0[2][7] + coeff0_3*dmats0[3][7] + coeff0_4*dmats0[4][7] + coeff0_5*dmats0[5][7] + coeff0_6*dmats0[6][7] + coeff0_7*dmats0[7][7] + coeff0_8*dmats0[8][7] + coeff0_9*dmats0[9][7]; new_coeff0_8 = coeff0_0*dmats0[0][8] + coeff0_1*dmats0[1][8] + coeff0_2*dmats0[2][8] + coeff0_3*dmats0[3][8] + coeff0_4*dmats0[4][8] + coeff0_5*dmats0[5][8] + coeff0_6*dmats0[6][8] + coeff0_7*dmats0[7][8] + coeff0_8*dmats0[8][8] + coeff0_9*dmats0[9][8]; new_coeff0_9 = coeff0_0*dmats0[0][9] + coeff0_1*dmats0[1][9] + coeff0_2*dmats0[2][9] + coeff0_3*dmats0[3][9] + coeff0_4*dmats0[4][9] + coeff0_5*dmats0[5][9] + coeff0_6*dmats0[6][9] + coeff0_7*dmats0[7][9] + coeff0_8*dmats0[8][9] + coeff0_9*dmats0[9][9]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0] + coeff0_4*dmats1[4][0] + coeff0_5*dmats1[5][0] + coeff0_6*dmats1[6][0] + coeff0_7*dmats1[7][0] + coeff0_8*dmats1[8][0] + coeff0_9*dmats1[9][0]; new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1] + coeff0_4*dmats1[4][1] + coeff0_5*dmats1[5][1] + coeff0_6*dmats1[6][1] + coeff0_7*dmats1[7][1] + coeff0_8*dmats1[8][1] + coeff0_9*dmats1[9][1]; new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2] + coeff0_4*dmats1[4][2] + coeff0_5*dmats1[5][2] + coeff0_6*dmats1[6][2] + coeff0_7*dmats1[7][2] + coeff0_8*dmats1[8][2] + coeff0_9*dmats1[9][2]; new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3] + coeff0_4*dmats1[4][3] + coeff0_5*dmats1[5][3] + coeff0_6*dmats1[6][3] + coeff0_7*dmats1[7][3] + coeff0_8*dmats1[8][3] + coeff0_9*dmats1[9][3]; new_coeff0_4 = coeff0_0*dmats1[0][4] + coeff0_1*dmats1[1][4] + coeff0_2*dmats1[2][4] + coeff0_3*dmats1[3][4] + coeff0_4*dmats1[4][4] + coeff0_5*dmats1[5][4] + coeff0_6*dmats1[6][4] + coeff0_7*dmats1[7][4] + coeff0_8*dmats1[8][4] + coeff0_9*dmats1[9][4]; new_coeff0_5 = coeff0_0*dmats1[0][5] + coeff0_1*dmats1[1][5] + coeff0_2*dmats1[2][5] + coeff0_3*dmats1[3][5] + coeff0_4*dmats1[4][5] + coeff0_5*dmats1[5][5] + coeff0_6*dmats1[6][5] + coeff0_7*dmats1[7][5] + coeff0_8*dmats1[8][5] + coeff0_9*dmats1[9][5]; new_coeff0_6 = coeff0_0*dmats1[0][6] + coeff0_1*dmats1[1][6] + coeff0_2*dmats1[2][6] + coeff0_3*dmats1[3][6] + coeff0_4*dmats1[4][6] + coeff0_5*dmats1[5][6] + coeff0_6*dmats1[6][6] + coeff0_7*dmats1[7][6] + coeff0_8*dmats1[8][6] + coeff0_9*dmats1[9][6]; new_coeff0_7 = coeff0_0*dmats1[0][7] + coeff0_1*dmats1[1][7] + coeff0_2*dmats1[2][7] + coeff0_3*dmats1[3][7] + coeff0_4*dmats1[4][7] + coeff0_5*dmats1[5][7] + coeff0_6*dmats1[6][7] + coeff0_7*dmats1[7][7] + coeff0_8*dmats1[8][7] + coeff0_9*dmats1[9][7]; new_coeff0_8 = coeff0_0*dmats1[0][8] + coeff0_1*dmats1[1][8] + coeff0_2*dmats1[2][8] + coeff0_3*dmats1[3][8] + coeff0_4*dmats1[4][8] + coeff0_5*dmats1[5][8] + coeff0_6*dmats1[6][8] + coeff0_7*dmats1[7][8] + coeff0_8*dmats1[8][8] + coeff0_9*dmats1[9][8]; new_coeff0_9 = coeff0_0*dmats1[0][9] + coeff0_1*dmats1[1][9] + coeff0_2*dmats1[2][9] + coeff0_3*dmats1[3][9] + coeff0_4*dmats1[4][9] + coeff0_5*dmats1[5][9] + coeff0_6*dmats1[6][9] + coeff0_7*dmats1[7][9] + coeff0_8*dmats1[8][9] + coeff0_9*dmats1[9][9]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3 + new_coeff0_4*basisvalue4 + new_coeff0_5*basisvalue5 + new_coeff0_6*basisvalue6 + new_coeff0_7*basisvalue7 + new_coeff0_8*basisvalue8 + new_coeff0_9*basisvalue9; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { double values[1]; double coordinates[2]; // Nodal coordinates on reference cell static double X[10][2] = {{0, 0}, {1, 0}, {0, 1}, {0.6666666667, 0.3333333333}, {0.3333333333, 0.6666666667}, {0, 0.3333333333}, {0, 0.6666666667}, {0.3333333333, 0}, {0.6666666667, 0}, {0.3333333333, 0.3333333333}}; // Components for each dof static unsigned int components[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // Extract vertex coordinates const double * const * x = c.coordinates; // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0] - X[i][1]; const double w1 = X[i][0]; const double w2 = X[i][1]; // Compute affine mapping x = F(X) coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at coordinates f.evaluate(values, coordinates, c); // Pick component for evaluation return values[components[i]]; } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; vertex_values[2] = dof_values[2]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new OptimizationBilinearForm_finite_element_0(); }};/// This class defines the interface for a finite element.class OptimizationBilinearForm_finite_element_1: public ufc::finite_element{public: /// Constructor OptimizationBilinearForm_finite_element_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~OptimizationBilinearForm_finite_element_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 3 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 10; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-09) x = -1.0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -