📄 pnn.cpp
字号:
/*
nn-utility (Provides neural networking utilities for c++ programmers)
Copyright (C) 2003 Panayiotis Thomakos
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
*/
//To contact the author send an email to panthomakos@users.sourceforge.net
/*Demonstrates an operational PNN for two dimensions.*/
#include <nn-utility.h>
using namespace nn_utility;
nn_utility_functions<float> derived;
//classify the results
void classify( nn_utility_functions<float>::VECTOR result ){
cout << "Resulting group that point was closer to: " <<
( result[0] > result[1] ? "group 1" : "group 0" );
}
int main(){
//define the layer and set it's values
PNN *hidden1 = new PNN();
hidden1->definef( 2, 5, -.5, -.5, .5, .5, .5, .2, .3, .2, .3, .1 );
//set the bias vector with 0.1
derived.ClearVector( hidden1->weight, 5, 0.1 );
//define the second layer and set it's values
PNN *hidden2 = new PNN();
hidden2->define( 5, 2 );
derived.LoadVectorf( hidden2->weight, 2, 0.5, 1.0/3.0 );
//First 2 nodes of layer 2 recieve input from first 2 nodes of layer 1 only
//Last 3 nodes of layer 2 recieve input from last 3 nodes of layer 1 only
//View the MANUAL file for more information
hidden2->SetBinary( 1, 0, //node 1 of layer 1: ( node 1 of layer 2, node 2 of layer 2 )
1, 0, //node 2 of layer 1: ...
0, 1, //node 3 of layer 1: ...
0, 1, //node 4 of layer 1: ...
0, 1 ); //node 5 of layer 1: ...
//create buffers
layer<float> *ppHidden1 = hidden1;
layer<float> *ppHidden2 = hidden2;
//connect the layers
derived.Insert( &ppHidden1, &ppHidden2 );
//create an input and FINAL vector
nn_utility_functions<float>::VECTOR input, FINAL;
//load the input
derived.LoadVectorf( input, 2, 0.0, 0.0 );
//Test:
hidden1->FeedForward( input, FINAL );
cout << "Input Vector: "; derived.PrintVector( input, 2 );
cout << "Feedforward sigmoid fires: "; derived.PrintVector( FINAL, 2 );
classify( FINAL );
cout << '\n';
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -