⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fixed.h

📁 aac解码器源程序在Visual C++下的实现
💻 H
字号:
/*** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com**  ** This program is free software; you can redistribute it and/or modify** it under the terms of the GNU General Public License as published by** the Free Software Foundation; either version 2 of the License, or** (at your option) any later version.** ** This program is distributed in the hope that it will be useful,** but WITHOUT ANY WARRANTY; without even the implied warranty of** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the** GNU General Public License for more details.** ** You should have received a copy of the GNU General Public License** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.**** Any non-GPL usage of this software or parts of this software is strictly** forbidden.**** The "appropriate copyright message" mentioned in section 2c of the GPLv2** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"**** Commercial non-GPL licensing of this software is possible.** For more info contact Nero AG through Mpeg4AAClicense@nero.com.**** $Id: fixed.h,v 1.32 2007/11/01 12:33:30 menno Exp $**/#ifndef __FIXED_H__#define __FIXED_H__#ifdef __cplusplusextern "C" {#endif#if defined(_WIN32_WCE) && defined(_ARM_)#include <cmnintrin.h>#endif#define COEF_BITS 28#define COEF_PRECISION (1 << COEF_BITS)#define REAL_BITS 14 // MAXIMUM OF 14 FOR FIXED POINT SBR#define REAL_PRECISION (1 << REAL_BITS)/* FRAC is the fractional only part of the fixed point number [0.0..1.0) */#define FRAC_SIZE 32 /* frac is a 32 bit integer */#define FRAC_BITS 31#define FRAC_PRECISION ((uint32_t)(1 << FRAC_BITS))#define FRAC_MAX 0x7FFFFFFFtypedef int32_t real_t;#define REAL_CONST(A) (((A) >= 0) ? ((real_t)((A)*(REAL_PRECISION)+0.5)) : ((real_t)((A)*(REAL_PRECISION)-0.5)))#define COEF_CONST(A) (((A) >= 0) ? ((real_t)((A)*(COEF_PRECISION)+0.5)) : ((real_t)((A)*(COEF_PRECISION)-0.5)))#define FRAC_CONST(A) (((A) == 1.00) ? ((real_t)FRAC_MAX) : (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5))))//#define FRAC_CONST(A) (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5)))#define Q2_BITS 22#define Q2_PRECISION (1 << Q2_BITS)#define Q2_CONST(A) (((A) >= 0) ? ((real_t)((A)*(Q2_PRECISION)+0.5)) : ((real_t)((A)*(Q2_PRECISION)-0.5)))#if defined(_WIN32) && !defined(_WIN32_WCE)/* multiply with real shift */static INLINE real_t MUL_R(real_t A, real_t B){    _asm {        mov eax,A        imul B        shrd eax,edx,REAL_BITS    }}/* multiply with coef shift */static INLINE real_t MUL_C(real_t A, real_t B){    _asm {        mov eax,A        imul B        shrd eax,edx,COEF_BITS    }}static INLINE real_t MUL_Q2(real_t A, real_t B){    _asm {        mov eax,A        imul B        shrd eax,edx,Q2_BITS    }}static INLINE real_t MUL_SHIFT6(real_t A, real_t B){    _asm {        mov eax,A        imul B        shrd eax,edx,6    }}static INLINE real_t MUL_SHIFT23(real_t A, real_t B){    _asm {        mov eax,A        imul B        shrd eax,edx,23    }}#if 1static INLINE real_t _MulHigh(real_t A, real_t B){    _asm {        mov eax,A        imul B        mov eax,edx    }}/* multiply with fractional shift */static INLINE real_t MUL_F(real_t A, real_t B){    return _MulHigh(A,B) << (FRAC_SIZE-FRAC_BITS);}/* Complex multiplication */static INLINE void ComplexMult(real_t *y1, real_t *y2,    real_t x1, real_t x2, real_t c1, real_t c2){    *y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);    *y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);}#elsestatic INLINE real_t MUL_F(real_t A, real_t B){    _asm {        mov eax,A        imul B        shrd eax,edx,FRAC_BITS    }}/* Complex multiplication */static INLINE void ComplexMult(real_t *y1, real_t *y2,    real_t x1, real_t x2, real_t c1, real_t c2){    *y1 = MUL_F(x1, c1) + MUL_F(x2, c2);    *y2 = MUL_F(x2, c1) - MUL_F(x1, c2);}#endif#elif defined(__GNUC__) && defined (__arm__)/* taken from MAD */#define arm_mul(x, y, SCALEBITS) \({ \    uint32_t __hi; \    uint32_t __lo; \    uint32_t __result; \    asm("smull  %0, %1, %3, %4\n\t" \        "movs   %0, %0, lsr %5\n\t" \        "adc    %2, %0, %1, lsl %6" \        : "=&r" (__lo), "=&r" (__hi), "=r" (__result) \        : "%r" (x), "r" (y), \        "M" (SCALEBITS), "M" (32 - (SCALEBITS)) \        : "cc"); \        __result; \})static INLINE real_t MUL_R(real_t A, real_t B){    return arm_mul(A, B, REAL_BITS);}static INLINE real_t MUL_C(real_t A, real_t B){    return arm_mul(A, B, COEF_BITS);}static INLINE real_t MUL_Q2(real_t A, real_t B){    return arm_mul(A, B, Q2_BITS);}static INLINE real_t MUL_SHIFT6(real_t A, real_t B){    return arm_mul(A, B, 6);}static INLINE real_t MUL_SHIFT23(real_t A, real_t B){    return arm_mul(A, B, 23);}static INLINE real_t _MulHigh(real_t x, real_t y){    uint32_t __lo;    uint32_t __hi;    asm("smull\t%0, %1, %2, %3"        : "=&r"(__lo),"=&r"(__hi)        : "%r"(x),"r"(y)        : "cc");    return __hi;}static INLINE real_t MUL_F(real_t A, real_t B){    return _MulHigh(A, B) << (FRAC_SIZE-FRAC_BITS);}/* Complex multiplication */static INLINE void ComplexMult(real_t *y1, real_t *y2,    real_t x1, real_t x2, real_t c1, real_t c2){    int32_t tmp, yt1, yt2;    asm("smull %0, %1, %4, %6\n\t"        "smlal %0, %1, %5, %7\n\t"        "rsb   %3, %4, #0\n\t"        "smull %0, %2, %5, %6\n\t"        "smlal %0, %2, %3, %7"        : "=&r" (tmp), "=&r" (yt1), "=&r" (yt2), "=r" (x1)        : "3" (x1), "r" (x2), "r" (c1), "r" (c2)        : "cc" );    *y1 = yt1 << (FRAC_SIZE-FRAC_BITS);    *y2 = yt2 << (FRAC_SIZE-FRAC_BITS);}#else  /* multiply with real shift */  #define MUL_R(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (REAL_BITS-1))) >> REAL_BITS)  /* multiply with coef shift */  #define MUL_C(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (COEF_BITS-1))) >> COEF_BITS)  /* multiply with fractional shift */#if defined(_WIN32_WCE) && defined(_ARM_)  /* eVC for PocketPC has an intrinsic function that returns only the high 32 bits of a 32x32 bit multiply */  static INLINE real_t MUL_F(real_t A, real_t B)  {      return _MulHigh(A,B) << (32-FRAC_BITS);  }#else#ifdef __BFIN__#define _MulHigh(X,Y) ({ int __xxo;                      \     asm (                                               \         "a1 = %2.H * %1.L (IS,M);\n\t"                  \         "a0 = %1.H * %2.H, a1+= %1.H * %2.L (IS,M);\n\t"\         "a1 = a1 >>> 16;\n\t"                           \         "%0 = (a0 += a1);\n\t"                          \         : "=d" (__xxo) : "d" (X), "d" (Y) : "A0","A1"); __xxo; })#define MUL_F(X,Y) ({ int __xxo;                         \     asm (                                               \         "a1 = %2.H * %1.L (M);\n\t"                     \         "a0 = %1.H * %2.H, a1+= %1.H * %2.L (M);\n\t"   \         "a1 = a1 >>> 16;\n\t"                           \         "%0 = (a0 += a1);\n\t"                          \         : "=d" (__xxo) : "d" (X), "d" (Y) : "A0","A1"); __xxo; })#else  #define _MulHigh(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_SIZE-1))) >> FRAC_SIZE)  #define MUL_F(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_BITS-1))) >> FRAC_BITS)#endif#endif  #define MUL_Q2(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (Q2_BITS-1))) >> Q2_BITS)  #define MUL_SHIFT6(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (6-1))) >> 6)  #define MUL_SHIFT23(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (23-1))) >> 23)/* Complex multiplication */static INLINE void ComplexMult(real_t *y1, real_t *y2,    real_t x1, real_t x2, real_t c1, real_t c2){    *y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);    *y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);}#endif#ifdef __cplusplus}#endif#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -