📄 hal_arch.h
字号:
//--------------------------------------------------------------------------// Thread register state manipulation for GDB support.// Default to a 32 bit register size for GDB register dumps.#ifndef CYG_HAL_GDB_REG#define CYG_HAL_GDB_REG CYG_WORD32#endif// Translate a stack pointer as saved by the thread context macros above into// a pointer to a HAL_SavedRegisters structure.#define HAL_THREAD_GET_SAVED_REGISTERS( _sp_, _regs_ ) \ (_regs_) = (HAL_SavedRegisters *)(_sp_)// If the CPU has an FPU, we also need to move the FPU registers.#define HAL_GET_GDB_FPU_REGISTERS( _regval_ , _regs_ )#define HAL_SET_GDB_FPU_REGISTERS( _regs_ , _regval_ )// Some targets also report the state of all the coprocessor 0// registers to GDB. If that is the case then// CYGPKG_HAL_SCORE_GDB_REPORT_CP0 will be defined and the// HAL_[G|S]ET_CP0_REGISTER_*() macros will be defined.#define HAL_GET_GDB_CP0_REGISTERS( _regval_, _regs_ )#define HAL_SET_GDB_CP0_REGISTERS( _regval_, _regs_ )// Copy a set of registers from a HAL_SavedRegisters structure into a// GDB ordered array. #define HAL_GET_GDB_REGISTERS( _aregval_ , _regs_ ) \{ \ CYG_HAL_GDB_REG *_regval_ = (CYG_HAL_GDB_REG *)(_aregval_); \ int _i_; \ \ for( _i_ = 0; _i_ < 32; _i_++ ) \ _regval_[_i_] = (_regs_)->d[_i_]; \ \ HAL_GET_GDB_FPU_REGISTERS( _regval_, _regs_ ); \ \ _regval_[32] = (_regs_)->sr; \ _regval_[33] = (_regs_)->cond; \ _regval_[34] = (_regs_)->cause; \ _regval_[35] = (_regs_)->excpvec; \ _regval_[36] = (_regs_)->ccr; \ _regval_[37] = (_regs_)->epc; \ _regval_[38] = (_regs_)->ema; \ _regval_[39] = (_regs_)->tlblock; \ _regval_[40] = (_regs_)->tlbpt; \ _regval_[41] = (_regs_)->peaddr; \ _regval_[42] = (_regs_)->tlbrpt; \ _regval_[43] = (_regs_)->pevn; \ _regval_[44] = (_regs_)->pectx; \ _regval_[45] = (_regs_)->limpfn; \ _regval_[46] = (_regs_)->ldmpfn; \ _regval_[47] = (_regs_)->prev; \ _regval_[48] = (_regs_)->dreg; \ _regval_[49] = (_regs_)->pc; \ _regval_[50] = (_regs_)->dsave; \ _regval_[51] = (_regs_)->counter; \ _regval_[52] = (_regs_)->ldcr; \ _regval_[53] = (_regs_)->stcr; \ _regval_[54] = (_regs_)->ceh; \ _regval_[55] = (_regs_)->cel; \ \ HAL_GET_GDB_CP0_REGISTERS( _regval_, _regs_ ); \}// Copy a GDB ordered array into a HAL_SavedRegisters structure.#define HAL_SET_GDB_REGISTERS( _regs_ , _aregval_ ) \{ \ CYG_HAL_GDB_REG *_regval_ = (CYG_HAL_GDB_REG *)(_aregval_); \ int _i_; \ \ for( _i_ = 0; _i_ < 32; _i_++ ) \ (_regs_)->d[_i_] = _regval_[_i_]; \ \ HAL_SET_GDB_FPU_REGISTERS( _regs_, _regval_ ); \ \ (_regs_)->sr = _regval_[32]; \ (_regs_)->cond = _regval_[33]; \ (_regs_)->cause = _regval_[34]; \ (_regs_)->excpvec = _regval_[35]; \ (_regs_)->ccr = _regval_[36]; \ (_regs_)->epc = _regval_[37]; \ (_regs_)->ema = _regval_[38]; \ (_regs_)->tlblock = _regval_[39]; \ (_regs_)->tlbpt = _regval_[40]; \ (_regs_)->peaddr = _regval_[41]; \ (_regs_)->tlbrpt = _regval_[42]; \ (_regs_)->pevn = _regval_[43]; \ (_regs_)->pectx = _regval_[44]; \ (_regs_)->limpfn = _regval_[45]; \ (_regs_)->ldmpfn = _regval_[46]; \ (_regs_)->prev = _regval_[47]; \ (_regs_)->dreg = _regval_[48]; \ (_regs_)->pc = _regval_[49]; \ (_regs_)->dsave = _regval_[50]; \ (_regs_)->counter = _regval_[51]; \ (_regs_)->ldcr = _regval_[52]; \ (_regs_)->stcr = _regval_[53]; \ (_regs_)->ceh = _regval_[54]; \ (_regs_)->cel = _regval_[55]; \ \ HAL_SET_GDB_CP0_REGISTERS( _regval_, _regs_ ); \}//--------------------------------------------------------------------------// HAL setjmp// Note: These definitions are repeated in hal_arch.h. If changes are// required remember to update both sets.#define CYGARC_JMP_BUF_SP 0
#define CYGARC_JMP_BUF_R12 1
#define CYGARC_JMP_BUF_R13 2
#define CYGARC_JMP_BUF_R14 3
#define CYGARC_JMP_BUF_R15 4
#define CYGARC_JMP_BUF_R16 5
#define CYGARC_JMP_BUF_R17 6
#define CYGARC_JMP_BUF_R18 7
#define CYGARC_JMP_BUF_R19 8
#define CYGARC_JMP_BUF_R20 9
#define CYGARC_JMP_BUF_R21 10
#define CYGARC_JMP_BUF_LR 11
#define CYGARC_JMP_BUF_BP 12#define CYGARC_JMP_BUF_R29 13#define CYGARC_JMP_BUF_SIZE 14typedef cyg_uint32 hal_jmp_buf[CYGARC_JMP_BUF_SIZE];externC int hal_setjmp(hal_jmp_buf env);externC void hal_longjmp(hal_jmp_buf env, int val);//-------------------------------------------------------------------------// Idle thread code.// This macro is called in the idle thread loop, and gives the HAL the// chance to insert code. Typical idle thread behaviour might be to halt the// processor.externC void hal_idle_thread_action(cyg_uint32 loop_count);#define HAL_IDLE_THREAD_ACTION(_count_) hal_idle_thread_action(_count_)//--------------------------------------------------------------------------// Minimal and sensible stack sizes: the intention is that applications// will use these to provide a stack size in the first instance prior to// proper analysis. Idle thread stack should be this big.// THESE ARE NOT INTENDED TO BE MICROMETRICALLY ACCURATE FIGURES.// THEY ARE HOWEVER ENOUGH TO START PROGRAMMING.// YOU MUST MAKE YOUR STACKS LARGER IF YOU HAVE LARGE "AUTO" VARIABLES!// This is not a config option because it should not be adjusted except// under "enough rope" sort of disclaimers.// Typical case stack frame size: return link + 4 pushed registers + some locals.#define CYGNUM_HAL_STACK_FRAME_SIZE (48)// Stack needed for a context switch:#define CYGNUM_HAL_STACK_CONTEXT_SIZE ((32+10)*4)// Interrupt + call to ISR, interrupt_end() and the DSR#define CYGNUM_HAL_STACK_INTERRUPT_SIZE (4+2*CYGNUM_HAL_STACK_CONTEXT_SIZE) #ifdef CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK// An interrupt stack which is large enough for all possible interrupt// conditions (and only used for that purpose) exists. "User" stacks// can be much smaller#define CYGNUM_HAL_STACK_SIZE_MINIMUM (CYGNUM_HAL_STACK_CONTEXT_SIZE+ \ CYGNUM_HAL_STACK_INTERRUPT_SIZE*2+ \ CYGNUM_HAL_STACK_FRAME_SIZE*8)#define CYGNUM_HAL_STACK_SIZE_TYPICAL (CYGNUM_HAL_STACK_SIZE_MINIMUM+1024)#else // CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK // No separate interrupt stack exists. Make sure all threads contain// a stack sufficiently large.#define CYGNUM_HAL_STACK_SIZE_MINIMUM (4096)#define CYGNUM_HAL_STACK_SIZE_TYPICAL (4096)#endif#endif /* __ASSEMBLER__ */// Convenience macros for accessing memory cached or uncached#define CYGARC_KSEG_MASK (0xE0000000)#define CYGARC_KSEG_CACHED (0x80000000)#define CYGARC_KSEG_UNCACHED (0xA0000000)#define CYGARC_KSEG_CACHED_BASE (0x80000000)#define CYGARC_KSEG_UNCACHED_BASE (0xA0000000)#ifndef __ASSEMBLER__#define CYGARC_CACHED_ADDRESS(x) ((((CYG_ADDRESS)(x)) & ~CYGARC_KSEG_MASK) | CYGARC_KSEG_CACHED)#define CYGARC_UNCACHED_ADDRESS(x) ((((CYG_ADDRESS)(x)) & ~CYGARC_KSEG_MASK) | CYGARC_KSEG_UNCACHED)#define CYGARC_PHYSICAL_ADDRESS(x) (((CYG_ADDRESS)(x)) & ~CYGARC_KSEG_MASK)#else // __ASSEMBLER__#define CYGARC_CACHED_ADDRESS(x) ((((x)) & ~CYGARC_KSEG_MASK) | CYGARC_KSEG_CACHED)#define CYGARC_UNCACHED_ADDRESS(x) ((((x)) & ~CYGARC_KSEG_MASK) | CYGARC_KSEG_UNCACHED)#define CYGARC_PHYSICAL_ADDRESS(x) (((x)) & ~CYGARC_KSEG_MASK)#define CYGARC_ADDRESS_REG_CACHED(reg) \ and reg, reg, ~CYGARC_KSEG_MASK; \ or reg, reg, CYGARC_KSEG_CACHED#define CYGARC_ADDRESS_REG_UNCACHED(reg) \ and reg, reg, ~CYGARC_KSEG_MASK; \ or reg, reg, CYGARC_KSEG_UNCACHED#endif /* __ASSEMBLER__ *///--------------------------------------------------------------------------// Macros for switching context between two eCos instances (jump from// code in ROM to code in RAM or vice versa).#define CYGARC_HAL_SAVE_GP() \ CYG_MACRO_START \ register CYG_ADDRWORD __gp_save; \ asm volatile ( "mv %0,r28;" \ ".extern _gp;" \ "la r28,_gp;" \ : "=r"(__gp_save))#define CYGARC_HAL_RESTORE_GP() \ asm volatile ( "mv r28,%0;" :: "r"(__gp_save) ); \ CYG_MACRO_END//--------------------------------------------------------------------------// Macro for finding return address. #define CYGARC_HAL_GET_RETURN_ADDRESS(_x_, _dummy_) \ asm volatile ( "mv %0,r3;" : "=r" (_x_) )#define CYGARC_HAL_GET_RETURN_ADDRESS_BACKUP(_dummy_)//--------------------------------------------------------------------------#endif // CYGONCE_HAL_HAL_ARCH_H// End of hal_arch.h
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -