📄 mem.c
字号:
return;
}
/* protect the heap from concurrent access */
LWIP_MEM_FREE_PROTECT();
/* Get the corresponding struct mem ... */
mem = (struct mem *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
/* ... which has to be in a used state ... */
LWIP_ASSERT("mem_free: mem->used", mem->used);
/* ... and is now unused. */
mem->used = 0;
if (mem < lfree) {
/* the newly freed struct is now the lowest */
lfree = mem;
}
MEM_STATS_DEC_USED(used, mem->next - ((u8_t *)mem - ram));
/* finally, see if prev or next are free also */
plug_holes(mem);
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mem_free_count = 1;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
LWIP_MEM_FREE_UNPROTECT();
}
/**
* In contrast to its name, mem_realloc can only shrink memory, not expand it.
* Since the only use (for now) is in pbuf_realloc (which also can only shrink),
* this shouldn't be a problem!
*
* @param rmem pointer to memory allocated by mem_malloc the is to be shrinked
* @param newsize required size after shrinking (needs to be smaller than or
* equal to the previous size)
* @return for compatibility reasons: is always == rmem, at the moment
* or NULL if newsize is > old size, in which case rmem is NOT touched
* or freed!
*/
void *
mem_realloc(void *rmem, mem_size_t newsize)
{
mem_size_t size;
mem_size_t ptr, ptr2;
struct mem *mem, *mem2;
/* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */
LWIP_MEM_FREE_DECL_PROTECT();
/* Expand the size of the allocated memory region so that we can
adjust for alignment. */
newsize = LWIP_MEM_ALIGN_SIZE(newsize);
if(newsize < MIN_SIZE_ALIGNED) {
/* every data block must be at least MIN_SIZE_ALIGNED long */
newsize = MIN_SIZE_ALIGNED;
}
if (newsize > MEM_SIZE_ALIGNED) {
return NULL;
}
LWIP_ASSERT("mem_realloc: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
(u8_t *)rmem < (u8_t *)ram_end);
if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
SYS_ARCH_DECL_PROTECT(lev);
LWIP_DEBUGF(MEM_DEBUG | 3, ("mem_realloc: illegal memory\n"));
/* protect mem stats from concurrent access */
SYS_ARCH_PROTECT(lev);
MEM_STATS_INC(illegal);
SYS_ARCH_UNPROTECT(lev);
return rmem;
}
/* Get the corresponding struct mem ... */
mem = (struct mem *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
/* ... and its offset pointer */
ptr = (u8_t *)mem - ram;
size = mem->next - ptr - SIZEOF_STRUCT_MEM;
LWIP_ASSERT("mem_realloc can only shrink memory", newsize <= size);
if (newsize > size) {
/* not supported */
return NULL;
}
if (newsize == size) {
/* No change in size, simply return */
return rmem;
}
/* protect the heap from concurrent access */
LWIP_MEM_FREE_PROTECT();
MEM_STATS_DEC_USED(used, (size - newsize));
mem2 = (struct mem *)&ram[mem->next];
if(mem2->used == 0) {
/* The next struct is unused, we can simply move it at little */
mem_size_t next;
/* remember the old next pointer */
next = mem2->next;
/* create new struct mem which is moved directly after the shrinked mem */
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
if (lfree == mem2) {
lfree = (struct mem *)&ram[ptr2];
}
mem2 = (struct mem *)&ram[ptr2];
mem2->used = 0;
/* restore the next pointer */
mem2->next = next;
/* link it back to mem */
mem2->prev = ptr;
/* link mem to it */
mem->next = ptr2;
/* last thing to restore linked list: as we have moved mem2,
* let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not
* the end of the heap */
if (mem2->next != MEM_SIZE_ALIGNED) {
((struct mem *)&ram[mem2->next])->prev = ptr2;
}
/* no need to plug holes, we've already done that */
} else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) {
/* Next struct is used but there's room for another struct mem with
* at least MIN_SIZE_ALIGNED of data.
* Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem
* ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED').
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
* region that couldn't hold data, but when mem->next gets freed,
* the 2 regions would be combined, resulting in more free memory */
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
mem2 = (struct mem *)&ram[ptr2];
if (mem2 < lfree) {
lfree = mem2;
}
mem2->used = 0;
mem2->next = mem->next;
mem2->prev = ptr;
mem->next = ptr2;
if (mem2->next != MEM_SIZE_ALIGNED) {
((struct mem *)&ram[mem2->next])->prev = ptr2;
}
/* the original mem->next is used, so no need to plug holes! */
}
/* else {
next struct mem is used but size between mem and mem2 is not big enough
to create another struct mem
-> don't do anyhting.
-> the remaining space stays unused since it is too small
} */
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mem_free_count = 1;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
LWIP_MEM_FREE_UNPROTECT();
return rmem;
}
/**
* Adam's mem_malloc() plus solution for bug #17922
* Allocate a block of memory with a minimum of 'size' bytes.
*
* @param size is the minimum size of the requested block in bytes.
* @return pointer to allocated memory or NULL if no free memory was found.
*
* Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
*/
void *
mem_malloc(mem_size_t size)
{
mem_size_t ptr, ptr2;
struct mem *mem, *mem2;
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
u8_t local_mem_free_count = 0;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
LWIP_MEM_ALLOC_DECL_PROTECT();
if (size == 0) {
return NULL;
}
/* Expand the size of the allocated memory region so that we can
adjust for alignment. */
size = LWIP_MEM_ALIGN_SIZE(size);
if(size < MIN_SIZE_ALIGNED) {
/* every data block must be at least MIN_SIZE_ALIGNED long */
size = MIN_SIZE_ALIGNED;
}
if (size > MEM_SIZE_ALIGNED) {
return NULL;
}
/* protect the heap from concurrent access */
sys_arch_sem_wait(mem_sem, 0);
LWIP_MEM_ALLOC_PROTECT();
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
/* run as long as a mem_free disturbed mem_malloc */
do {
local_mem_free_count = 0;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
/* Scan through the heap searching for a free block that is big enough,
* beginning with the lowest free block.
*/
for (ptr = (u8_t *)lfree - ram; ptr < MEM_SIZE_ALIGNED - size;
ptr = ((struct mem *)&ram[ptr])->next) {
mem = (struct mem *)&ram[ptr];
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mem_free_count = 0;
LWIP_MEM_ALLOC_UNPROTECT();
/* allow mem_free to run */
LWIP_MEM_ALLOC_PROTECT();
if (mem_free_count != 0) {
local_mem_free_count = mem_free_count;
}
mem_free_count = 0;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
if ((!mem->used) &&
(mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
/* mem is not used and at least perfect fit is possible:
* mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
/* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
* at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
* -> split large block, create empty remainder,
* remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
* mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
* struct mem would fit in but no data between mem2 and mem2->next
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
* region that couldn't hold data, but when mem->next gets freed,
* the 2 regions would be combined, resulting in more free memory
*/
ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
/* create mem2 struct */
mem2 = (struct mem *)&ram[ptr2];
mem2->used = 0;
mem2->next = mem->next;
mem2->prev = ptr;
/* and insert it between mem and mem->next */
mem->next = ptr2;
mem->used = 1;
if (mem2->next != MEM_SIZE_ALIGNED) {
((struct mem *)&ram[mem2->next])->prev = ptr2;
}
MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM));
} else {
/* (a mem2 struct does no fit into the user data space of mem and mem->next will always
* be used at this point: if not we have 2 unused structs in a row, plug_holes should have
* take care of this).
* -> near fit or excact fit: do not split, no mem2 creation
* also can't move mem->next directly behind mem, since mem->next
* will always be used at this point!
*/
mem->used = 1;
MEM_STATS_INC_USED(used, mem->next - ((u8_t *)mem - ram));
}
if (mem == lfree) {
/* Find next free block after mem and update lowest free pointer */
while (lfree->used && lfree != ram_end) {
LWIP_MEM_ALLOC_UNPROTECT();
/* prevent high interrupt latency... */
LWIP_MEM_ALLOC_PROTECT();
lfree = (struct mem *)&ram[lfree->next];
}
LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
}
LWIP_MEM_ALLOC_UNPROTECT();
sys_sem_signal(mem_sem);
LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
(mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
LWIP_ASSERT("mem_malloc: sanity check alignment",
(((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0);
return (u8_t *)mem + SIZEOF_STRUCT_MEM;
}
}
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
/* if we got interrupted by a mem_free, try again */
} while(local_mem_free_count != 0);
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
LWIP_DEBUGF(MEM_DEBUG | 2, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
MEM_STATS_INC(err);
LWIP_MEM_ALLOC_UNPROTECT();
sys_sem_signal(mem_sem);
return NULL;
}
#endif /* MEM_USE_POOLS */
/**
* Contiguously allocates enough space for count objects that are size bytes
* of memory each and returns a pointer to the allocated memory.
*
* The allocated memory is filled with bytes of value zero.
*
* @param count number of objects to allocate
* @param size size of the objects to allocate
* @return pointer to allocated memory / NULL pointer if there is an error
*/
void *mem_calloc(mem_size_t count, mem_size_t size)
{
void *p;
/* allocate 'count' objects of size 'size' */
p = mem_malloc(count * size);
if (p) {
/* zero the memory */
memset(p, 0, count * size);
}
return p;
}
#endif /* !MEM_LIBC_MALLOC */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -