📄 tcp.c
字号:
/**
* @file
* Transmission Control Protocol for IP
*
* This file contains common functions for the TCP implementation, such as functinos
* for manipulating the data structures and the TCP timer functions. TCP functions
* related to input and output is found in tcp_in.c and tcp_out.c respectively.
*
*/
/*
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
*
*/
#include "lwip/opt.h"
#if LWIP_TCP /* don't build if not configured for use in lwipopts.h */
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/memp.h"
#include "lwip/snmp.h"
#include "lwip/tcp.h"
#include "lwip/tcp_impl.h"
#include "lwip/debug.h"
#include "lwip/stats.h"
#include <string.h>
const char * const tcp_state_str[] = {
"CLOSED",
"LISTEN",
"SYN_SENT",
"SYN_RCVD",
"ESTABLISHED",
"FIN_WAIT_1",
"FIN_WAIT_2",
"CLOSE_WAIT",
"CLOSING",
"LAST_ACK",
"TIME_WAIT"
};
/* Incremented every coarse grained timer shot (typically every 500 ms). */
u32_t tcp_ticks;
const u8_t tcp_backoff[13] =
{ 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7};
/* Times per slowtmr hits */
const u8_t tcp_persist_backoff[7] = { 3, 6, 12, 24, 48, 96, 120 };
/* The TCP PCB lists. */
/** List of all TCP PCBs bound but not yet (connected || listening) */
struct tcp_pcb *tcp_bound_pcbs;
/** List of all TCP PCBs in LISTEN state */
union tcp_listen_pcbs_t tcp_listen_pcbs;
/** List of all TCP PCBs that are in a state in which
* they accept or send data. */
struct tcp_pcb *tcp_active_pcbs;
/** List of all TCP PCBs in TIME-WAIT state */
struct tcp_pcb *tcp_tw_pcbs;
#define NUM_TCP_PCB_LISTS 4
#define NUM_TCP_PCB_LISTS_NO_TIME_WAIT 3
/** An array with all (non-temporary) PCB lists, mainly used for smaller code size */
struct tcp_pcb ** const tcp_pcb_lists[] = {&tcp_listen_pcbs.pcbs, &tcp_bound_pcbs,
&tcp_active_pcbs, &tcp_tw_pcbs};
/** Only used for temporary storage. */
struct tcp_pcb *tcp_tmp_pcb;
/** Timer counter to handle calling slow-timer from tcp_tmr() */
static u8_t tcp_timer;
static u16_t tcp_new_port(void);
/**
* Called periodically to dispatch TCP timers.
*
*/
void
tcp_tmr(void)
{
/* Call tcp_fasttmr() every 250 ms */
tcp_fasttmr();
if (++tcp_timer & 1) {
/* Call tcp_tmr() every 500 ms, i.e., every other timer
tcp_tmr() is called. */
tcp_slowtmr();
}
}
/**
* Closes the TX side of a connection held by the PCB.
* For tcp_close(), a RST is sent if the application didn't receive all data
* (tcp_recved() not called for all data passed to recv callback).
*
* Listening pcbs are freed and may not be referenced any more.
* Connection pcbs are freed if not yet connected and may not be referenced
* any more. If a connection is established (at least SYN received or in
* a closing state), the connection is closed, and put in a closing state.
* The pcb is then automatically freed in tcp_slowtmr(). It is therefore
* unsafe to reference it.
*
* @param pcb the tcp_pcb to close
* @return ERR_OK if connection has been closed
* another err_t if closing failed and pcb is not freed
*/
static err_t
tcp_close_shutdown(struct tcp_pcb *pcb, u8_t rst_on_unacked_data)
{
err_t err;
if (rst_on_unacked_data && (pcb->state != LISTEN)) {
if ((pcb->refused_data != NULL) || (pcb->rcv_wnd != TCP_WND)) {
/* Not all data received by application, send RST to tell the remote
side about this. */
LWIP_ASSERT("pcb->flags & TF_RXCLOSED", pcb->flags & TF_RXCLOSED);
/* don't call tcp_abort here: we must not deallocate the pcb since
that might not be expected when calling tcp_close */
tcp_rst(pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
pcb->local_port, pcb->remote_port);
tcp_pcb_purge(pcb);
/* TODO: to which state do we move now? */
/* move to TIME_WAIT since we close actively */
TCP_RMV(&tcp_active_pcbs, pcb);
pcb->state = TIME_WAIT;
TCP_REG(&tcp_tw_pcbs, pcb);
return ERR_OK;
}
}
switch (pcb->state) {
case CLOSED:
/* Closing a pcb in the CLOSED state might seem erroneous,
* however, it is in this state once allocated and as yet unused
* and the user needs some way to free it should the need arise.
* Calling tcp_close() with a pcb that has already been closed, (i.e. twice)
* or for a pcb that has been used and then entered the CLOSED state
* is erroneous, but this should never happen as the pcb has in those cases
* been freed, and so any remaining handles are bogus. */
err = ERR_OK;
if (pcb->local_port != 0) {
TCP_RMV(&tcp_bound_pcbs, pcb);
}
memp_free(MEMP_TCP_PCB, pcb);
pcb = NULL;
break;
case LISTEN:
err = ERR_OK;
tcp_pcb_remove(&tcp_listen_pcbs.pcbs, pcb);
memp_free(MEMP_TCP_PCB_LISTEN, pcb);
pcb = NULL;
break;
case SYN_SENT:
err = ERR_OK;
tcp_pcb_remove(&tcp_active_pcbs, pcb);
memp_free(MEMP_TCP_PCB, pcb);
pcb = NULL;
snmp_inc_tcpattemptfails();
break;
case SYN_RCVD:
err = tcp_send_fin(pcb);
if (err == ERR_OK) {
snmp_inc_tcpattemptfails();
pcb->state = FIN_WAIT_1;
}
break;
case ESTABLISHED:
err = tcp_send_fin(pcb);
if (err == ERR_OK) {
snmp_inc_tcpestabresets();
pcb->state = FIN_WAIT_1;
}
break;
case CLOSE_WAIT:
err = tcp_send_fin(pcb);
if (err == ERR_OK) {
snmp_inc_tcpestabresets();
pcb->state = LAST_ACK;
}
break;
default:
/* Has already been closed, do nothing. */
err = ERR_OK;
pcb = NULL;
break;
}
if (pcb != NULL && err == ERR_OK) {
/* To ensure all data has been sent when tcp_close returns, we have
to make sure tcp_output doesn't fail.
Since we don't really have to ensure all data has been sent when tcp_close
returns (unsent data is sent from tcp timer functions, also), we don't care
for the return value of tcp_output for now. */
/* @todo: When implementing SO_LINGER, this must be changed somehow:
If SOF_LINGER is set, the data should be sent and acked before close returns.
This can only be valid for sequential APIs, not for the raw API. */
tcp_output(pcb);
}
return err;
}
/**
* Closes the connection held by the PCB.
*
* Listening pcbs are freed and may not be referenced any more.
* Connection pcbs are freed if not yet connected and may not be referenced
* any more. If a connection is established (at least SYN received or in
* a closing state), the connection is closed, and put in a closing state.
* The pcb is then automatically freed in tcp_slowtmr(). It is therefore
* unsafe to reference it (unless an error is returned).
*
* @param pcb the tcp_pcb to close
* @return ERR_OK if connection has been closed
* another err_t if closing failed and pcb is not freed
*/
err_t
tcp_close(struct tcp_pcb *pcb)
{
#if TCP_DEBUG
LWIP_DEBUGF(TCP_DEBUG, ("tcp_close: closing in "));
tcp_debug_print_state(pcb->state);
#endif /* TCP_DEBUG */
if (pcb->state != LISTEN) {
/* Set a flag not to receive any more data... */
pcb->flags |= TF_RXCLOSED;
}
/* ... and close */
return tcp_close_shutdown(pcb, 1);
}
/**
* Causes all or part of a full-duplex connection of this PCB to be shut down.
* This doesn't deallocate the PCB!
*
* @param pcb PCB to shutdown
* @param shut_rx shut down receive side if this is != 0
* @param shut_tx shut down send side if this is != 0
* @return ERR_OK if shutdown succeeded (or the PCB has already been shut down)
* another err_t on error.
*/
err_t
tcp_shutdown(struct tcp_pcb *pcb, int shut_rx, int shut_tx)
{
if (pcb->state == LISTEN) {
return ERR_CONN;
}
if (shut_rx) {
/* shut down the receive side: free buffered data... */
if (pcb->refused_data != NULL) {
pbuf_free(pcb->refused_data);
pcb->refused_data = NULL;
}
/* ... and set a flag not to receive any more data */
pcb->flags |= TF_RXCLOSED;
}
if (shut_tx) {
/* This can't happen twice since if it succeeds, the pcb's state is changed.
Only close in these states as the others directly deallocate the PCB */
switch (pcb->state) {
case SYN_RCVD:
case ESTABLISHED:
case CLOSE_WAIT:
return tcp_close_shutdown(pcb, 0);
default:
/* don't shut down other states */
break;
}
}
/* @todo: return another err_t if not in correct state or already shut? */
return ERR_OK;
}
/**
* Abandons a connection and optionally sends a RST to the remote
* host. Deletes the local protocol control block. This is done when
* a connection is killed because of shortage of memory.
*
* @param pcb the tcp_pcb to abort
* @param reset boolean to indicate whether a reset should be sent
*/
void
tcp_abandon(struct tcp_pcb *pcb, int reset)
{
u32_t seqno, ackno;
u16_t remote_port, local_port;
ip_addr_t remote_ip, local_ip;
#if LWIP_CALLBACK_API
tcp_err_fn errf;
#endif /* LWIP_CALLBACK_API */
void *errf_arg;
/* pcb->state LISTEN not allowed here */
LWIP_ASSERT("don't call tcp_abort/tcp_abandon for listen-pcbs",
pcb->state != LISTEN);
/* Figure out on which TCP PCB list we are, and remove us. If we
are in an active state, call the receive function associated with
the PCB with a NULL argument, and send an RST to the remote end. */
if (pcb->state == TIME_WAIT) {
tcp_pcb_remove(&tcp_tw_pcbs, pcb);
memp_free(MEMP_TCP_PCB, pcb);
} else {
seqno = pcb->snd_nxt;
ackno = pcb->rcv_nxt;
ip_addr_copy(local_ip, pcb->local_ip);
ip_addr_copy(remote_ip, pcb->remote_ip);
local_port = pcb->local_port;
remote_port = pcb->remote_port;
#if LWIP_CALLBACK_API
errf = pcb->errf;
#endif /* LWIP_CALLBACK_API */
errf_arg = pcb->callback_arg;
tcp_pcb_remove(&tcp_active_pcbs, pcb);
if (pcb->unacked != NULL) {
tcp_segs_free(pcb->unacked);
}
if (pcb->unsent != NULL) {
tcp_segs_free(pcb->unsent);
}
#if TCP_QUEUE_OOSEQ
if (pcb->ooseq != NULL) {
tcp_segs_free(pcb->ooseq);
}
#endif /* TCP_QUEUE_OOSEQ */
memp_free(MEMP_TCP_PCB, pcb);
TCP_EVENT_ERR(errf, errf_arg, ERR_ABRT);
if (reset) {
LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_abandon: sending RST\n"));
tcp_rst(seqno, ackno, &local_ip, &remote_ip, local_port, remote_port);
}
}
}
/**
* Aborts the connection by sending a RST (reset) segment to the remote
* host. The pcb is deallocated. This function never fails.
*
* ATTENTION: When calling this from one of the TCP callbacks, make
* sure you always return ERR_ABRT (and never return ERR_ABRT otherwise
* or you will risk accessing deallocated memory or memory leaks!
*
* @param pcb the tcp pcb to abort
*/
void
tcp_abort(struct tcp_pcb *pcb)
{
tcp_abandon(pcb, 1);
}
/**
* Binds the connection to a local portnumber and IP address. If the
* IP address is not given (i.e., ipaddr == NULL), the IP address of
* the outgoing network interface is used instead.
*
* @param pcb the tcp_pcb to bind (no check is done whether this pcb is
* already bound!)
* @param ipaddr the local ip address to bind to (use IP_ADDR_ANY to bind
* to any local address
* @param port the local port to bind to
* @return ERR_USE if the port is already in use
* ERR_VAL if bind failed because the PCB is not in a valid state
* ERR_OK if bound
*/
err_t
tcp_bind(struct tcp_pcb *pcb, ip_addr_t *ipaddr, u16_t port)
{
int i;
int max_pcb_list = NUM_TCP_PCB_LISTS;
struct tcp_pcb *cpcb;
LWIP_ERROR("tcp_bind: can only bind in state CLOSED", pcb->state == CLOSED, return ERR_VAL);
#if SO_REUSE
/* Unless the REUSEADDR flag is set,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -