📄 2195.txt
字号:
/* * * 最小费用最大流 * * */
/* notice:
修改的dijstra + 双F算法 O( V^2 * M ) M为流量上限
用于带权匹配 O( V^3 )
*/
#include <vector>
using namespace std;
typedef int type; //费用类型
const int size = 210; //图的顶规模
const type MAX_FEE = 10000000; //费用上限
const int MAX = 1000; //流的上限
class minfee_flow
{
public:
//删除所有边
void clear();
//增加一条从from到to 上限为c 单位流量费用为w 的边
void insert_edge( int from, int to, int c, type w );
// 求最小费用最大流,返回费用
// nodenum为顶数量 ( 顶编号0,1...nodenum-1 )
// begin为源,end为汇,flow用来返回最大流量( NULL表示不返回 )
type min_fee_max_flow( int nodenum, int begin, int end, int *flow );
private:
/* needn't care */
struct edge
{
int c,f;
type w;
int to;
int rev_i;
}; //边的定义
vector<edge> e[size]; //邻接表
type fee, sum, dis[size+1], l[size]; //总费用,最短路费用和,(dijstra)最短距离,用来修改边权的标记
bool sign[size]; //(dijstra)是否确定最短路
edge *from[size]; //(dijstra)最短路径中,该点的入边
int pri[size]; //(dijstra)..该点的前驱
int n, s, t; //顶数量,源,汇
int maxflow, add; //最大流,每次的增流
bool dijstra( ); //(dijstra)
void increse( edge *ep, int d ); //将边*ep增加流量d
void modify( ); //修改l,计算最短路相关
};
///////////////////////////////////////////////////////////////////////
// 函数实现
void minfee_flow::clear()
{
int i;
for( i=0; i<n; i++ )
e[i].clear();
}
bool minfee_flow::dijstra( )
{
int i, j, k, to, v;
for( i=0; i<=n; i++ )
dis[i] = MAX_FEE;
memset( sign, 0, sizeof(bool)*n );
dis[ s ] = 0;
for( i=0; i<n; i++ )
{
k = n;
for( j=0; j<n; j++ )
if( !sign[j] && dis[k] > dis[j] )
k = j;
if( k == n )
break;
sign[ k ] = true;
for( j=0; j<e[k].size(); j++ )
if( e[k][j].f != e[k][j].c )
{
to = e[k][j].to;
if( !sign[to] && dis[ to ] > ( v = dis[ k ] + l[k] - l[to] + e[k][j].w ) )
{
dis[ to ] = v;
pri[ to ] = k;
from[ to ] = &e[k][j];
}
}
}
return sign[t] == true;
}
void minfee_flow::increse( edge *ep, int d )
{
ep->f += d;
e[ep->to][ep->rev_i].f -= d;
}
void minfee_flow::modify( )
{
int i, temp;
add = MAX; sum = 0;
for( i=t; i!=s; i = pri[i] )
{
sum += l[pri[i]] - l[i] + from[i]->w;
if( ( temp = from[i]->c - from[i]->f ) < add )
add = temp;
}
sum += l[t];
for( i=t; i!=s; i = pri[i] )
increse( from[i], add );
for( i=0; i<n; i++ )
l[i] += dis[i];
return;
}
void minfee_flow::insert_edge( int from, int to, int c, type w )
{
edge eg1 = { c, 0, w, to, e[to].size() }, eg2 = { 0, 0, -w, from, e[from].size() };
e[from].push_back( eg1 );
e[to].push_back( eg2 );
}
type minfee_flow::min_fee_max_flow( int nodenum, int begin, int end, int *flow )
{
fee = 0; maxflow = 0;
n = nodenum, s = begin, t = end;
memset( l, 0, sizeof(type)*n );
while( dijstra( ) )
{
modify( );
fee += sum*add;
maxflow += add;
}
if( flow )
*flow = maxflow;
return fee;
}
///////////////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <stdio.h>
minfee_flow mf;
char map[110][110];
int main()
{
int n, m, a, b, i, j, h;
int x1[100], y1[100], x2[100], y2[100];
while( 1 )
{
scanf( "%d %d", &n, &m );
if( n == 0 && m == 0 )
break;
for( i=0; i<n; i++ )
scanf( "%s", map[i] );
a = 0, b = 0;
for( i=0; i<n; i++ )
for( j=0; j<m; j++ )
if( map[i][j] == 'H' )
{
x1[a] = i, y1[a] = j;
a++;
}
else if( map[i][j] == 'm' )
{
x2[b] = i, y2[b] = j;
b++;
}
mf.clear( );
h = a+b+2;
for( i=0; i<a; i++ )
for( j=0; j<b; j++ )
mf.insert_edge( 2+i, 2+a+j, 1, abs( x1[i]-x2[j] ) + abs( y1[i]-y2[j] ) );
for( i=0; i<a; i++ )
mf.insert_edge( 0, 2+i, 1, 0 );
for( i=0; i<b; i++ )
mf.insert_edge( 2+a+i, 1, 1, 0 );
printf( "%d\n", mf.min_fee_max_flow( h, 0, 1, 0 ) );
}
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -