📄 6_6.htm
字号:
<td width="10%">-1</td> <td width="10%">12/5</td> <td width="10%">-3/5</td> <td width="10%">←λ</td> </tr></table></div><p>故x<sub>1</sub>=2/5, x<sub>2</sub>=1/5,x<sub>3</sub>=0时, maxz=12/5</p><p>比较本例在上节中的解答,可以看出,只有在n较大时,用改善的单纯形表格才有优势.</p><p><strong>例2</strong> <br>maxz=-x<sub>1</sub>-x<sub>2</sub>+4x<sub>3</sub>,<br>x<sub>1</sub>+x<sub>2</sub>+x<sub>3</sub>≤9<br>x<sub>1</sub>+x<sub>2</sub>-x<sub>3</sub>≤2<br>-x<sub>1</sub>+x<sub>2</sub>+x<sub>3</sub>≤4<br>x<sub>1</sub>,x<sub>2</sub>,x<sub>3</sub>≥0<br><strong>解</strong> 引进松弛变量x<sub>4</sub>,x<sub>5</sub>,x<sub>6</sub>,得<br>maxz=-x<sub>1</sub>-x<sub>2</sub>+4x<sub>3</sub>+0x<sub>4</sub>+0x<sub>5</sub>+0x<sub>6</sub><br>x<sub>1</sub>+x<sub>2</sub>+x<sub>3</sub>+x<sub>4</sub>=9<br>x<sub>1</sub>+x<sub>2</sub>-x<sub>3</sub>+x<sub>5</sub>=2<br>-x<sub>1</sub>+x<sub>2</sub>+x<sub>3</sub>+x<sub>6</sub>=4<br>x<sub>1</sub>,x<sub>2</sub>,x<sub>3</sub>, x<sub>4</sub> , x<sub>5</sub>, x<sub>6</sub>≥0<br>结果如下:<br></p><div align="left"><table border="1" width="85%"> <tr> <td width="9%">B</td> <td width="9%">C<sub>B</sub></td> <td width="9%">C<sub>B</sub>B<sup>-1</sup></td> <td width="9%">C</td> <td width="9%">-1</td> <td width="9%">-1</td> <td width="9%">4</td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">0</td> <td width="10%">β</td> </tr> <tr> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">P<sub>0</sub></td> <td width="9%">P<sub>1</sub></td> <td width="9%">P<sub>2</sub></td> <td width="9%">P<sub>3</sub></td> <td width="9%">P<sub>4</sub></td> <td width="9%">P<sub>5</sub></td> <td width="9%">P<sub>6</sub></td> <td width="10%"> </td> </tr> <tr> <td width="9%">A<sub>4</sub></td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%"> </td> <td width="9%">9</td> <td width="9%">1</td> <td width="9%">1</td> <td width="9%">2</td> <td width="9%">1</td> <td width="9%">0</td> <td width="10%">0</td> </tr> <tr> <td width="9%">A<sub>5</sub></td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">2</td> <td width="9%">1</td> <td width="9%">1</td> <td width="9%">-1</td> <td width="9%">0</td> <td width="9%">1</td> <td width="9%">0</td> <td width="10%"> </td> </tr> <tr> <td width="9%">A<sub>6</sub></td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">4</td> <td width="9%">-1</td> <td width="9%">1</td> <td width="9%">(1)</td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">1</td> <td width="10%">4</td> </tr> <tr> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">z=0</td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">4</td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="10%">← λ</td> </tr></table></div><p><br></p><div align="left"><table border="1" width="85%"> <tr> <td width="9%">B</td> <td width="9%">C<sub>B</sub></td> <td width="9%">C<sub>B</sub>B<sup>-1</sup></td> <td width="9%">C</td> <td width="9%">-1</td> <td width="9%">-1</td> <td width="9%">4</td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">0</td> <td width="10%">β</td> </tr> <tr> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">P<sub>0</sub></td> <td width="9%">P<sub>1</sub></td> <td width="9%">P<sub>2</sub></td> <td width="9%">P<sub>3</sub></td> <td width="9%">P<sub>4</sub></td> <td width="9%">P<sub>5</sub></td> <td width="9%">P<sub>6</sub></td> <td width="10%"> </td> </tr> <tr> <td width="9%">A<sub>4</sub></td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">1</td> <td width="9%">(3)</td> <td width="9%"> </td> <td width="9%">0</td> <td width="9%">1</td> <td width="9%">0</td> <td width="9%">-2</td> <td width="10%">1/3</td> </tr> <tr> <td width="9%">A<sub>5</sub></td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">6</td> <td width="9%">0</td> <td width="9%"> </td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">1</td> <td width="9%">1</td> <td width="10%"> </td> </tr> <tr> <td width="9%">A<sub>6</sub></td> <td width="9%">4</td> <td width="9%">4</td> <td width="9%">4</td> <td width="9%">-1</td> <td width="9%"> </td> <td width="9%">1</td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">1</td> <td width="10%"> </td> </tr> <tr> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">z=16</td> <td width="9%"> </td> <td width="9%">3</td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="10%">← λ</td> </tr></table></div><p><br></p><div align="left"><table border="1" width="85%"> <tr> <td width="9%">B</td> <td width="9%">C<sub>B</sub></td> <td width="9%">C<sub>B</sub>B<sup>-1</sup></td> <td width="9%">C</td> <td width="9%">-1</td> <td width="9%">-1</td> <td width="9%">4</td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">0</td> <td width="10%">β</td> </tr> <tr> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">P<sub>0</sub></td> <td width="9%">P<sub>1</sub></td> <td width="9%">P<sub>2</sub></td> <td width="9%">P<sub>3</sub></td> <td width="9%">P<sub>4</sub></td> <td width="9%">P<sub>5</sub></td> <td width="9%">P<sub>6</sub></td> <td width="10%"> </td> </tr> <tr> <td width="9%">A<sub>1</sub></td> <td width="9%">-1</td> <td width="9%">1</td> <td width="9%">1/3</td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">1/3</td> <td width="9%">0</td> <td width="9%">-2/3</td> <td width="10%"> </td> </tr> <tr> <td width="9%">A<sub>5</sub></td> <td width="9%">0</td> <td width="9%">0</td> <td width="9%">6</td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">0</td> <td width="9%">1</td> <td width="9%">1</td> <td width="10%"> </td> </tr> <tr> <td width="9%">A<sub>3</sub></td> <td width="9%">4</td> <td width="9%">2</td> <td width="9%">13/3</td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">1/3</td> <td width="9%">0</td> <td width="9%">1/3</td> <td width="10%"> </td> </tr> <tr> <td width="9%"> </td> <td width="9%"> </td> <td width="9%">z=17</td> <td width="9%"> </td> <td width="9%">0</td> <td width="9%">-4</td> <td width="9%">0</td> <td width="9%">-1</td> <td width="9%">0</td> <td width="9%">-2</td> <td width="10%">← λ</td> </tr></table></div><p><br> 在上面的单纯形法中,当出现c<sub>3</sub>-z<sub>3</sub>>0,便可立即判定可取P<sub>3</sub>作为进入基,<br>相应地确定P<sub>6</sub>退出.只要对P<sub>3</sub>进行列消元,使之出现(0 0 1)<sup>T</sup>,<br>则相应可得新的P<sub>0</sub>,P<sub>4</sub>,P<sub>5</sub>,P<sub>6</sub>便是所求的P<sub>0</sub>及新的逆矩阵.即以P<sub>4</sub>,P<sub>5</sub>,P<sub>6</sub>为<br>基的逆矩阵便是<br><img src="6_6_3.gif"> </p></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -