📄 6_9.htm
字号:
<html><head><meta http-equiv="Content-Type" content="text/html; charset=gb2312"><title>§6.9</title><meta name="GENERATOR" content="Microsoft FrontPage 3.0"></head><body><p align="center"><font size="4"><b>§6.9 对偶原理</b></font></p><p><strong>1.对偶概念</strong><br>问题P:max z=CX,AX≤b,X≥0,<br>问题D:min w=Yb,YA≥c,Y≥0.<br>其中 A=( a<sub>ij</sub> )<sub>m×n</sub>,b=( b<sub>i</sub> )<sub>m×1</sub>,C=( c<sub>j</sub> )<sub>1×n</sub>,X=( x<sub>j</sub> )<sub>n×1</sub>,Y=(y<sub>i</sub>)<sub>1×m</sub>.<br><strong>定义 问题D称为问题P的对偶问题.<br></strong>D等价于 max w=( -b<sup>T</sup> )Y<sup>T</sup>,(-A<sup>T</sup>)Y<sup>T</sup>≤-C<sup>T</sup>,Y<sup>T</sup>≥0,<br>按定义,这个问题的对偶问题就是<br>min z=-CX,X<sup>T</sup> (-A<sup>T</sup> )≥(-b<sup>T</sup> )<sup>T</sup>,X≥0。<br>即 max z=CX,AX≤b,X≥0。<br>由此可知,D,P互为对偶问题。<br>2.对偶问题的经济解释<br>( P') min z =CX,AX≥b,X≥0:消费者<br>( D') max w=Yb,YA≤c,Y≥0:工厂<br>A=( a<sub>ij</sub> )<sub>m×n</sub>,m种营养素,n种食品.<br>a<sub>ij</sub>:第 j 种食品中含第 i 种营养素的比例<br>B:营养素需要量表,C:食品价格表,<br>X:消费者对每种食品的购买量表,<br>Y:营养素工厂制定的营养素销售价格表.<br>∑ a<sub>ij</sub>x<sub>j</sub>≥b<sub>i</sub>,i=1 , … ,m.消费者所购食品应满足对第 i 种营养素的需要.<br>∑a<sub>ij</sub>y<sub>i</sub>≤c<sub>j</sub>,j=1, … , n.第 j 种食品用营养素代替应比买这种食品不贵.<br>Yb≤Y(AX)=(YA)X≤CX</p><p><br><strong>3.非对称的对偶问题<br></strong>在前面提出的对偶问题是对称的,还有一种非对称的对偶问题.<br><br><strong>定理</strong> 问题 (P<sub>1</sub>) maxz=CX,AX=b,X≥0的对偶问题是<br>min w=Yb,YA≥C. (D<sub>1</sub>).(D<sub>1</sub>)中Y无非负的限制.<br><strong></strong></p><p><strong>证</strong> ( P<sub>1</sub> )中的AX=b等价于AX≤b,AX≥b<br>或 (A -A)<sup>T</sup>X≤(b -b)<sup>T</sup>.<br>而maxz=CX,(A -A)<sup>T</sup>X≤(b -b)<sup>T</sup>,X≥0,(P<sub>1</sub>)<br>的对偶问题按照定义为<br>min w=( Y<sub>1</sub>┆Y<sub>2</sub> ) (b -b)<sup>T</sup>,( D )<br>( Y<sub>1</sub>┆Y<sub>2</sub> ) (A -A)<sup>T</sup>≥C,Y<sub>1</sub>≥0,Y<sub>2</sub>≥0.<br>而( Y<sub>1</sub>┆Y<sub>2</sub> )(b -b)<sup>T</sup>=( Y<sub>1</sub>-Y<sub>2</sub> )b,<br>( Y<sub>1</sub>┆Y<sub>2</sub> )(A -A)<sup>T</sup>=( Y<sub>1</sub>-Y<sub>2</sub>)A,令<br>Y=Y<sub>1</sub>-Y<sub>2</sub>,( D )即为<br>min w=Yb<br>YA≥c, Y无非负限制 <br></p><p><strong>4.对偶定理<br></strong>在前面讨论对偶问题的经济意义时已经说明<br>了 CX≤(YA)X=Y(AX)≤Yb,X≥0.<br><br><strong>定理</strong> 设X,Y分别是问题(P),(D)的<br>允许解,则X,Y分别是(P),(D)的最优解的<br>充要条件是CX=Yb.<br><br><strong>证</strong> 充分性:若CX=Yb,则X是(P)的最优<br>解,否则存在X<sub>1</sub>,CX<sub>1</sub>>CX=Yb,与前面<br>的命题矛盾.同理,Y是(D)的最优解.<br>必要性:设X,Y分别是(P),(D)的最优解.<br>在(P)中引入松弛变量X<sub>s</sub>,<br>max z=( C┆0 ) (X X<sub>s</sub>)<sup>T</sup>,<br>( A┆I )(X X<sub>s</sub>)<sup>T</sup>=b, (X X<sub>s</sub>)<sup>T</sup>≥0.<br>( A┆I )=( A<sub>1</sub> , …,A<sub>n+m</sub> )设B是最优解对应<br>的一个基矩阵.X<sub>B</sub>=B<sup>-1</sup>b.C<sub>B</sub>X<sub>B</sub>=CX.<br>B<sup>-1</sup>( A┆I┆b )=( P<sub>1</sub>… P<sub>n+m</sub>┆P<sub>0</sub> ),令<br>Y<sub>B</sub>=C<sub>B</sub>B<sup>-1</sup>.下证Y<sub>B</sub>是(D)的一个最优解.<br>由于XB是最优解,故有 c<sub>j</sub>-z<sub>j</sub>≤0,j=1,…n+m.<br>( z<sub>1</sub> z<sub>2</sub> … z<sub>n+m</sub> )≥( C┆0),<br>(C<sub>B</sub>B<sup>-1</sup>A<sub>1</sub> C<sub>B</sub>B<sup>-1</sup>A<sub>2</sub> … C<sub>B</sub>B<sup>-1</sup>A<sub>n+m</sub> )≥(C┆0)<br>C<sub>B</sub>B<sup>-1</sup>( A┆I )≥( C┆0 )<br>即C<sub>B</sub>B<sup>-1</sup>A≥C, C<sub>B</sub>B<sup>-1</sup>≥0<br>即Y<sub>B</sub>A≥C,Y<sub>B</sub>≥0.∴Y<sub>B</sub>是(D)的允许解.<br>Y<sub>b</sub>b= C<sub>B</sub>B<sup>-1</sup>b=C<sub>B</sub>X<sub>B</sub>=CX<br>所以Y<sub>B</sub>是 (D)的最优解.<br></p><p><strong>推论</strong> 互为对偶问题的(P)和(D)必有下列情况之一成立.<br>1.两个问题都有允许解,则其最优解的函数值相等.<br>2.一问题有允许解,但目标函数无界,其对偶问题无允许解;<br>3.两个问题都无允许解.<br><br><strong>5.影子价格<br></strong>重温 2中所赋予(P’) (D’)问题的经济意义.<br>m种食品,n种营养素,A=( a<sub>ij</sub> )<sub>m×n</sub>,a<sub>ij</sub>每单位第 j 种食<br>品含第 i 种营养素的量<br>C:食品价格表;b:营养素需要量表;<br>X:食品购买量;Y:营养素销售价格<br>P’:min z=CX,AX≥b,X≥0:消费者<br>D’:maxw=Yb,YA≤c,Y≥0:营养素厂<br>X<sub>opt</sub>=B<sup>-1</sup>b , Y<sub>opt</sub>=C<sub>B</sub>B<sup>-1</sup>, ☆<sub>w</sub>/☆<sub>b</sub>=C<sub>B</sub>B<sup>-1</sup><br>营养素销售价格见解地由食品价格所决定.故Y<sub>opt</sub>可称为食品价格的影子价格.<br></p><p><strong>6.例<br></strong>min w=y<sub>1</sub>+2y<sub>2</sub>,<br>3y<sub>1</sub>+4y<sub>2</sub>≥6<br>y<sub>1</sub>+3y<sub>2</sub>≥3<br>2y<sub>1</sub>+ y<sub>2</sub>≥2<br>y<sub>1</sub> , y<sub>2</sub>≥0<br>引进松弛变量y<sub>3</sub> , y<sub>4</sub> ,y<sub>5</sub>及人工变量y<sub>6</sub> , y<sub>7</sub> ,y<sub>8</sub><br>min w<sub>1</sub>=y<sub>1</sub>+2y<sub>2</sub>+y<sub>6</sub>+y<sub>7</sub>+y<sub>8</sub><br>3y<sub>1</sub>+4y<sub>2</sub>-y<sub>3</sub>+ y<sub>6</sub>=6<br>y<sub>1</sub>+3y<sub>2</sub>-y<sub>4</sub> + y<sub>7</sub>=3<br>2y<sub>1</sub>+ y<sub>2</sub>-y<sub>5</sub>+y<sub>8</sub>=2<br>y<sub>1</sub> , … , y<sub>8</sub>≥0<br>其单纯形表如下:<br></p><p> </p><div align="left"><table border="1" width="90%"> <tr> <td width="7%">B</td> <td width="7%">C<sub>B</sub></td> <td width="7%">C<sub>B</sub>B<sup>-1</sup></td> <td width="7%">C</td> <td width="8%">1</td> <td width="8%">2</td> <td width="8%">0</td> <td width="8%">0</td> <td width="8%">0</td> <td width="8%">1</td> <td width="8%">1</td> <td width="8%">1</td> <td width="8%">β</td> </tr> <tr> <td width="7%"> </td> <td width="7%"> </td> <td width="7%"> </td> <td width="7%">P<sub>0</sub></td> <td width="8%">P<sub>1</sub></td> <td width="8%">P<sub>2</sub></td> <td width="8%">P<sub>3</sub></td> <td width="8%">P<sub>4</sub></td> <td width="8%">P<sub>5</sub></td> <td width="8%">P<sub>6</sub></td> <td width="8%">P<sub>7</sub></td> <td width="8%">P<sub>8</sub></td> <td width="8%"> </td> </tr> <tr> <td width="7%">A<sub>6</sub></td> <td width="7%">1</td> <td width="7%">1</td> <td width="7%">6</td> <td width="8%">3</td> <td width="8%">4</td> <td width="8%">-1</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">1</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> </tr> <tr> <td width="7%">A<sub>7</sub></td> <td width="7%">1</td> <td width="7%">1</td> <td width="7%">3</td> <td width="8%">1</td> <td width="8%">(3)</td> <td width="8%"> </td> <td width="8%">-1</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">1</td> <td width="8%"> </td> <td width="8%">1</td> </tr> <tr> <td width="7%">A<sub>8</sub></td> <td width="7%">1</td> <td width="7%">1</td> <td width="7%">2</td> <td width="8%">2</td> <td width="8%">1</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">-1</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">1</td> <td width="8%"> </td> </tr> <tr> <td width="7%"> </td> <td width="7%"> </td> <td width="7%">w<sub>1</sub>=11</td> <td width="7%"> </td> <td width="8%"> </td> <td width="8%">-8</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">←λ</td> </tr></table></div><p> </p><div align="left"><table border="1" width="90%"> <tr> <td width="7%">B</td> <td width="7%">C<sub>B</sub></td> <td width="7%">C<sub>B</sub>B<sup>-1</sup></td> <td width="7%">C</td> <td width="8%">1</td> <td width="8%">2</td> <td width="8%">0</td> <td width="8%">0</td> <td width="8%">0</td> <td width="8%">1</td> <td width="8%">1</td> <td width="8%">1</td> <td width="8%">β</td> </tr> <tr> <td width="7%"> </td> <td width="7%"> </td> <td width="7%"> </td> <td width="7%">P<sub>0</sub></td> <td width="8%">P<sub>1</sub></td> <td width="8%">P<sub>2</sub></td> <td width="8%">P<sub>3</sub></td> <td width="8%">P<sub>4</sub></td> <td width="8%">P<sub>5</sub></td> <td width="8%">P<sub>6</sub></td> <td width="8%">P<sub>7</sub></td> <td width="8%">P<sub>8</sub></td> <td width="8%"> </td> </tr> <tr> <td width="7%">A<sub>6</sub></td> <td width="7%">1</td> <td width="7%">1</td> <td width="7%">2</td> <td width="8%">5/3</td> <td width="8%">0</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">1</td> <td width="8%">-4/3</td> <td width="8%">0</td> <td width="8%"> </td> </tr> <tr> <td width="7%">A<sub>2</sub></td> <td width="7%">0</td> <td width="7%">-5/3</td> <td width="7%">1</td> <td width="8%">1/3</td> <td width="8%">1</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">0</td> <td width="8%">1/3</td> <td width="8%">0</td> <td width="8%"> </td> </tr> <tr> <td width="7%">A<sub>8</sub></td> <td width="7%">1</td> <td width="7%">1</td> <td width="7%">1</td> <td width="8%">(5/3)</td> <td width="8%">0</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">0</td> <td width="8%">-5/3</td> <td width="8%">1</td> <td width="8%">5/3</td> </tr> <tr> <td width="7%"> </td> <td width="7%"> </td> <td width="7%">w<sub>1</sub>=3</td> <td width="7%"> </td> <td width="8%">-10/3</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">←λ</td> </tr></table></div><p> </p><div align="left"><table border="1" width="90%"> <tr> <td width="7%">B</td> <td width="7%">C<sub>B</sub></td> <td width="7%">C<sub>B</sub>B<sup>-1</sup></td> <td width="7%">C</td> <td width="8%">1</td> <td width="8%">2</td> <td width="8%">0</td> <td width="8%">0</td> <td width="8%">0</td> <td width="8%">1</td> <td width="8%">1</td> <td width="8%">1</td> <td width="8%">β</td> </tr> <tr> <td width="7%"> </td> <td width="7%"> </td> <td width="7%"> </td> <td width="7%">P<sub>0</sub></td> <td width="8%">P<sub>1</sub></td> <td width="8%">P<sub>2</sub></td> <td width="8%">P<sub>3</sub></td> <td width="8%">P<sub>4</sub></td> <td width="8%">P<sub>5</sub></td> <td width="8%">P<sub>6</sub></td> <td width="8%">P<sub>7</sub></td> <td width="8%">P<sub>8</sub></td> <td width="8%"> </td> </tr> <tr> <td width="7%">A<sub>6</sub></td> <td width="7%">1</td> <td width="7%">1</td> <td width="7%">1</td> <td width="8%">0</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">(1)</td> <td width="8%">1</td> <td width="8%">-1</td> <td width="8%">-1</td> <td width="8%">1</td> </tr> <tr> <td width="7%">A<sub>2</sub></td> <td width="7%">0</td> <td width="7%">-1</td> <td width="7%">4/5</td> <td width="8%">0</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">1/5</td> <td width="8%">0</td> <td width="8%">2/5</td> <td width="8%">-1/5</td> <td width="8%"> </td> </tr> <tr> <td width="7%">A<sub>1</sub></td> <td width="7%">0</td> <td width="7%">-1</td> <td width="7%">3/5</td> <td width="8%">1</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">-3/5</td> <td width="8%">0</td> <td width="8%">-1/5</td> <td width="8%">3/5</td> <td width="8%"> </td> </tr> <tr> <td width="7%"> </td> <td width="7%"> </td> <td width="7%">w<sub>1</sub>=1</td> <td width="7%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">-1</td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%"> </td> <td width="8%">←λ</td> </tr></table>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -