📄 timu.htm
字号:
<P> <IMG border=0 height=41 src="timu.files/timu.h15.gif" width=60></P><P> II 当n为奇数时 </P><P> 由I的讨论知,a<SUB>r</SUB>比a<SUB>r-3</SUB>多了a+b-c=1的三角形。 </P><P> 而这种三角形可知 </P><P> <IMG border=0 height=35 src="timu.files/timu.h16.gif" width=69></P><P>当 <IMG border=0 height=35 src="timu.files/timu.h17.gif" width=29> 能被2整除时,这种三角形有 <IMG border=0 height=35 src="timu.files/timu.h17.gif" width=29> 个 </P><P>当 <IMG border=0 height=35 src="timu.files/timu.h17.gif" width=29> 不能被2整除时,这种三角形有<IMG border=0 height=35 src="timu.files/timu.h18.gif" width=29>个 </P><P> <IMG border=0 height=46 src="timu.files/timu.h19.gif" width=133></P><P> (2)</P><P> <IMG border=0 height=46 src="timu.files/timu.h20.gif" width=244></P><P> </P><P> </P><P>26. </P><P>(a)证明边长为整数、最大边长为l的三角形的个数是 </P><P> <IMG border=0 height=39 src="timu.files/timu.h12.gif" width=312></P><P>(b)设f<SUB>n</SUB>记边长不超过2n的三角形的个数,而g<SUB>n</SUB>记边长不超过2n+1的三角形的个数,求f<SUB>n</SUB>和g<SUB>n</SUB> 的表达式。 </P><P>解:... </P> (a)l=1时,只有一种可能(即3边都是 长度为1)。 <P> <IMG border=0 height=35 src="timu.files/timu.h21.gif" width=69></P><P> l=2时,有两种可能(即“1,2,2”、 “2,2,2”)。 </P><P> <IMG border=0 height=35 src="timu.files/timu.h22.gif" width=82></P><P>设三角形的3边边长为x、y、z, 且 <IMG border=0 height=18 src="timu.files/timu.h23.gif" width=130> 。</P><P> l=2k+1时 </P><P> x+y=2k+2时,有k+1种方案,即“1,2k+1”、“2,2k”、...…、“k+1,k+1”。 </P><P> x+y=2k+3时,有k种方案,即“2,2k+1”、“3,2k”、...…、“k+1,k+2”。 </P><P> x+y=2k+4时,有k种方案,即“3,2k+1”、“4,2k”、...…、“k+2,k+2”。 </P><P> … … </P><P> … … </P><P> x+y=4k+1时,有1种方案,即“2k,2k+1”。 </P><P> x+y=4k+2时,有1种方案,即“2k+1,2k+1”。 </P><P:COLORSCHEME colors="#000066,#FFFFFF,#000000,#FFCC66,#FF9900,#000044,#3366FF,#FFFF00"><P> <IMG border=0 height=111 src="timu.files/timu.h24.gif" width=149></P><P> l=2k时 </P><P> x+y=2k+1时,有k种方案,即“1,2k”、“2,2k-1”、...…、“k,k+1”。 </P><P> x+y=2k+2时,有k种方案,即“2,2k”、“3,2k-1”、...…、“k+1,k+1”。 </P><P> x+y=2k+3时,有k种方案,即“3,2k”、“4,2k”、...…、“k+2,k+2”。 </P><P> … … </P><P> … … </P><P> x+y=4k-1时,有1种方案,即“2k-1,2k”。 </P><P> x+y=4k时,有1种方案,即“2k,2k”。 </P><P> <IMG border=0 height=111 src="timu.files/timu.h25.gif" width=137></P><P>(b)</P><P> <IMG border=0 height=70 src="timu.files/timu.h26.gif" width=167></P><P> <IMG border=0 height=38 src="timu.files/timu.h27.gif" width=142></P><P> <IMG border=0 height=115 src="timu.files/timu.h28.gif" width=224></P><P> <IMG border=0 height=102 src="timu.files/timu.h29.gif" width=194></P><P> <IMG border=0 height=104 src="timu.files/timu.h30.gif" width=180></P><P> <IMG border=0 height=124 src="timu.files/timu.h31.gif" width=216></P><P> <IMG border=0 height=83 src="timu.files/timu.h32.gif" width=151></P><P> </P><P> </P><P>27. 设 </P><P> <IMG border=0 height=124 src="timu.files/timu.h13.gif" width=203></P><P>(a)证明 a<SUB>n+1</SUB>=a<SUB>n</SUB>+b<SUB>n+1</SUB>, b<SUB>n+1</SUB>=a<SUB>n</SUB>+b<SUB>n</SUB></P><P>(b)求序列{a<SUB>n</SUB>}与{b<SUB>n</SUB>}的母函数。 </P><P>(c)用Fibonacci数来表示a<SUB>n</SUB>与b<SUB>n</SUB>。 </P><P>解:... </P>1)证明 <P> <IMG border=0 height=104 src="timu.files/timu.h33.gif" width=240></P><P> <IMG border=0 height=83 src="timu.files/timu.h34.gif" width=230></P><P>同理可证 </P><P> <IMG border=0 height=20 src="timu.files/timu.h35.gif" width=72></P><P>3)解</P><P> <IMG border=0 height=41 src="timu.files/timu.h36.gif" width=120></P><P> </P><P> </P><P>28. 设 F<SUB>1</SUB>=F<SUB>2</SUB>=1, F<SUB>n</SUB>=F<SUB>n-1</SUB>+F<SUB>n-2</SUB></P><P>(a)证明 </P><P> <IMG border=0 height=54 src="timu.files/timu.h14.gif" width=180></P><P>(b)证明F<SUB>m</SUB>|F<SUB>n</SUB>的充要条件是m|n。 </P><P>(c)证明 </P><P> <IMG border=0 height=80 src="timu.files/timu.h15.gif" width=172></P><P>(d)证明(F<SUB>m</SUB>,F<SUB>n</SUB>)=F<SUB>(m,n)</SUB>, (m,n)为m,n的最大公约数。 </P><P>解:... </P> 1)证明 <P> 用数学归纳法 </P><P> I k=2时 成立,即 <IMG border=0 height=20 src="timu.files/timu.h37.gif" width=110></P><P> II 设k=m时成立 <IMG border=0 height=20 src="timu.files/timu.h38.gif" width=134></P><P> 则k=m+1时, </P><P> <IMG border=0 height=105 src="timu.files/timu.h39.gif" width=203></P><P> 用归纳假设 由I、II知题设成立。 </P><P> 2)证明 </P><P> F<SUB>m</SUB>与F<SUB>m-1</SUB>互素(自己证明) </P><P> <IMG border=0 height=81 src="timu.files/timu.h40.gif" width=187></P><P>作了k次后 若n-km<m</P><P>则上式</P><P> <IMG border=0 height=38 src="timu.files/timu.h41.gif" width=77></P><P> 3)证明 </P><P> <IMG border=0 height=102 src="timu.files/timu.h42.gif" width=159></P><P>当n是偶数时,最后一次会出现F<SUB>0</SUB>=0项 </P><P> <IMG border=0 height=41 src="timu.files/timu.h43.gif" width=194></P><P>当n是奇数时,最后一次会出现F<SUB>1</SUB>=1项 </P><P> <IMG border=0 height=41 src="timu.files/timu.h44.gif" width=201></P><P> 4)证明 </P><P> 用2)的结论 </P><P> <IMG border=0 height=41 src="timu.files/timu.h45.gif" width=134></P><P>下面证明是最大公约数 </P><P>设F<SUB>(n,m)</SUB>不是最大公约数, F<SUB>N</SUB>是,</P><P>则 m|N, n|N 则 N=<(n,m)与 N>(n,m)矛盾 </P><P>是最大公约数</P><P> </P><P> </P><P>29. 从1到n的自然数中选取k个不同且不相邻的数,设此选取的方案为f(n,k)。 </P><P>(a)求f(n,k)的递推关系。 </P><P>(b)用归纳法求f(n,k)。 </P><P>(c)若设1与n算是相邻的数,并设在此假定下从1到n的自然数中选取k个不同且不相邻的k个数的方案数为g(n,k),利用f(n,k)求g(n,k)。 </P><P>解:...</P>(a) <P> <IMG border=0 height=61 src="timu.files/timu.h46.gif" width=195></P><P>(b) </P><P> <IMG border=0 height=61 src="timu.files/timu.h47.gif" width=195></P><P>(c)</P><P> <IMG border=0 height=124 src="timu.files/timu.h48.gif" width=181></P><P> </P><P> </P><P>30. 设S<SUB>2</SUB>(n,k)是第二类Stirling数。</P><P>证明 </P><P> <IMG border=0 height=36 src="timu.files/timu.h16.gif" width=150></P><P>证明:... </P>设与第n+1号球同盒的球有n-k个,这样,其他k个球就放入另外m-1个盒子, k=m-1,m,…,n。 即从n个不同的球中取k个放入m-1个相同的盒子的方案有 <P> <IMG border=0 height=126 src="timu.files/timu.h49.gif" width=211></P><P> </P><P> </P><P>31. 求下图中从A点出发到n点的路径数。 </P><P> <IMG border=0 height=49 src="timu.files/timu.h17.gif" width=85></P><P>解:... </P> 把上方的点序列设为a<SUB>n</SUB> <P> <SUB> </SUB>把下方的点序列设为b<SUB>n</SUB></P><P> <SUB> </SUB>可得第推关系 </P><P> <IMG border=0 height=63 src="timu.files/timu.h50.gif" width=201></P><P>特征方程为 <IMG border=0 height=18 src="timu.files/timu.h51.gif" width=79></P><P>解得 </P><P> <IMG border=0 height=38 src="timu.files/timu.h52.gif" width=61></P><P>代入初值可解</P><P> </P><P> </P><P>32. n位0,1符号串,求从左向右只在最后两位才出现0,0的符号串的数目。</P><P> 解:... </P>设所求的串的个数为a<SUB>n</SUB>,相邻不同为0的串的个数为b<SUB>n</SUB> <P> <IMG border=0 height=61 src="timu.files/timu.h53.gif" width=113></P><P>特征方程为 </P><P> <IMG border=0 height=18 src="timu.files/timu.h54.gif" width=79></P><P>解得 </P><P> <IMG border=0 height=61 src="timu.files/timu.h55.gif" width=137></P><P>代入初值可解</P><P> </P><P> </P><P>33. 试证 </P><P> <IMG border=0 height=56 src="timu.files/timu.h18.gif" width=79></P><P>证明:...</P> 用数学归纳法 <P> I n=2时 </P><P> <IMG border=0 height=41 src="timu.files/timu.h56.gif" width=90></P><P> 成立 </P><P> II 设n=k时成立即 </P><P> <IMG border=0 height=45 src="timu.files/timu.h57.gif" width=128></P><P> 当n=k+1时 </P><P> <IMG border=0 height=88 src="timu.files/timu.h58.gif" width=191></P><P> 由I、II知题设成立</P></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -