⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 timu.htm

📁 随着各行各业的发展和生产需要
💻 HTM
📖 第 1 页 / 共 3 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><!-- saved from url=(0052)http://course.webc.com.cn/courseware/math/2/timu.htm --><HTML><HEAD><META content="text/html; charset=gb2312" http-equiv=Content-Type><META content="MSHTML 5.00.2614.3500" name=GENERATOR></HEAD><BODY>1.证明等式&nbsp; <P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=70 src="timu.files/timu.h3.gif" width=276></P><P>解:...&nbsp;</P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=86 src="timu.files/timu.h19.gif" width=282> <P>&nbsp;&nbsp;&nbsp; 比较n次方系数即可证。</P><P> </P><P> </P><P>2.求(1+x<SUP>4</SUP>+x<SUP>8</SUP>)中x<SUP>20</SUP>项的系数.&nbsp;</P><P>解:...&nbsp;</P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=82 src="timu.files/timu.h20.gif" width=471> <P>分析(x<SUP>4</SUP>+x<SUP>8</SUP>)<SUP>k</SUP>的结构可知仅当k=3,4,5时有x<SUP>20</SUP>项&nbsp;</P><P>&nbsp;&nbsp;&nbsp; <IMG border=0 height=50 src="timu.files/timu.h21.gif" width=135></P><P>&nbsp;&nbsp;&nbsp; <IMG border=0 height=53 src="timu.files/timu.h22.gif" width=137></P><P>&nbsp;&nbsp;&nbsp; <IMG border=0 height=33 src="timu.files/timu.h23.gif" width=180></P><P>三个系数相加即为所求</P><P> </P><P> </P><P>3.有红、黄、蓝、白球各两个,绿、紫、 黑的球各3个,问从中取出10个球,试问 有多少种不同的取法?&nbsp;</P><P>解:...&nbsp;</P>用指数型母函数,可得母函数&nbsp; <P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=139 src="timu.files/timu.h24.gif" width=239></P><P>x<SUP>10</SUP>系数即为所求。</P><P> </P><P> </P><P>4.求由A,B,C,D组成的允许重复的排列中 AB至少出现一次的排列数目。&nbsp;</P><P>解1:...&nbsp;</P>&nbsp;&nbsp;&nbsp; A、B、C、D组成的全排列数为 p=n<SUP>4</SUP> <P>&nbsp;&nbsp;&nbsp; 不出现AB的字符串的排列数为&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=178 src="timu.files/timu.h25.gif" width=293></P><P>&nbsp;&nbsp;&nbsp; 特征方程为:&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=154 src="timu.files/timu.h26.gif" width=322></P><P>&nbsp;&nbsp;&nbsp; 解为:</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=56 src="timu.files/timu.h27.gif" width=298>&nbsp;</P><P>&nbsp;&nbsp;&nbsp; 可设为:&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=199 src="timu.files/timu.h28.gif" width=421></P><P>&nbsp;&nbsp;&nbsp; 代入初值:&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=159 src="timu.files/timu.h29.gif" width=392></P><P>&nbsp;&nbsp;&nbsp; AB至少出现一次的排列为&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=193 src="timu.files/timu.h30.gif" width=396></P><P>&nbsp;&nbsp;&nbsp; 解二: 至少出现一次AB的字符串的排列数为&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=174 src="timu.files/timu.h31.gif" width=310></P><P>&nbsp;&nbsp;&nbsp; 特征方程为:&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=153 src="timu.files/timu.h32.gif" width=268></P><P>&nbsp;&nbsp;&nbsp; 解为:</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=141 src="timu.files/timu.h33.gif" width=402></P><P> </P><P> </P><P>5.求n位四进制数中2和3必须出现偶次的 数目。&nbsp;</P><P>解:...&nbsp;</P>&nbsp;&nbsp;&nbsp; 对符合题设要求的排列如果0可以出现在最高位,则可得母函数:&nbsp; <P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=149 src="timu.files/timu.h34.gif" width=305></P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=35 src="timu.files/timu.h35.gif" width=113></P><P>但是对n位四进制数来说最高位不能为0。</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=98 src="timu.files/timu.h36.gif" width=213></P><P> </P><P> </P><P>6.试求由a,b,c三个文字组成的n位符号串 中不出现aa图像的符号串的数目。&nbsp;</P><P>解:...&nbsp;</P>&nbsp;&nbsp;&nbsp; 设不出现aa的字符串的排列数为a<SUB>n</SUB> <P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=40 src="timu.files/timu.h37.gif" width=236></P><P>&nbsp;&nbsp;&nbsp; 特征方程为:</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=50 src="timu.files/timu.h38.gif" width=172></P><P>&nbsp;&nbsp;&nbsp; 解为:&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=124 src="timu.files/timu.h39.gif" width=261></P><P>&nbsp;&nbsp;&nbsp; 可设为:</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=150 src="timu.files/timu.h40.gif" width=261></P><P>&nbsp;&nbsp;&nbsp; 代入初值:&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=74 src="timu.files/timu.h41.gif" width=155></P><P>&nbsp;&nbsp;&nbsp; 代入可得结果</P><P> </P><P> </P><P>7.证明序列</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; C(n,n),C(n+1,n),C(n+2,n),<SUP>...</SUP></P><P>的母函数为&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=149 src="timu.files/timu.h4.gif" width=295></P><P>证明:...</P>&nbsp;&nbsp;&nbsp; 题设中序列的母函数为:&nbsp; <P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=159 src="timu.files/timu.h42.gif" width=279></P><P>由$4性质3得,上式</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=70 src="timu.files/timu.h43.gif" width=261></P><P> </P><P> </P><P>8.证明&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=67 src="timu.files/timu.h5.gif" width=204></P><P>证明:...</P>&nbsp;&nbsp;&nbsp; 等式的右端相当于从n+m+1个球中取n+1个球的组合。 把这n+m+1个球编号,如果取出的n+1个球中最小编号是一,则得到 <P>C(n+m,n)</P><P>&nbsp;&nbsp;&nbsp; 如果最小编号是二则得到C(n+m-1,n)</P><P>&nbsp;&nbsp;&nbsp; 如果最小编号是m则得到C(n,n)。&nbsp;</P><P>&nbsp;&nbsp;&nbsp; 可证</P><P> </P><P> </P><P>9.利用&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=37 src="timu.files/timu.h6.gif" width=124> ,&nbsp;</P><P>改善 §4(2) 的p<SUB>n</SUB>估计式。&nbsp;</P><P>解:...&nbsp;</P>&nbsp;&nbsp;&nbsp; 由推导过程知&nbsp; <P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=68 src="timu.files/timu.h44.gif" width=277></P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=79 src="timu.files/timu.h45.gif" width=266></P><P>令&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=85 src="timu.files/timu.h46.gif" width=248></P><P>求导得&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=99 src="timu.files/timu.h47.gif" width=296></P><P>令 <IMG border=0 height=166 src="timu.files/timu.h48.gif" width=324></P><P>即&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=179 src="timu.files/timu.h49.gif" width=342></P><P>解得&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=127 src="timu.files/timu.h50.gif" width=285></P><P>将x<SUB>1</SUB>代入y得</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=34 src="timu.files/timu.h51.gif" width=191></P><P> </P><P> </P><P>10. 8台计算机分给3个单位,第1单位的分配量不超过3台,第2单位的分配量不超过4台,第3个单位不超过5台,问共有几种分配方案?&nbsp;</P><P>解:...&nbsp;</P><P>&nbsp;&nbsp;&nbsp; 把单位看成元素,共12个元素&nbsp;</P><P>&nbsp;&nbsp;&nbsp; 其中&nbsp;&nbsp;&nbsp; 第1单位有3个&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 第2单位有4个&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 第3单位有5个&nbsp;</P><P>&nbsp;&nbsp;&nbsp; 则命题可看成从12个元素中取8个的组合。母函数为:&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=43 src="timu.files/timu.h52.gif" width=110></P><P>其中x<SUP>8</SUP>项系数为所求</P><P> </P><P> </P><P>11. 证明正整数n都可以唯一地表示成不同的且不相邻的Fibonacci数之和。即&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=56 src="timu.files/timu.h7.gif" width=178></P><P>注意F<SUB>1</SUB>=F<SUB>2</SUB>=1是相同的Fibonacci数。&nbsp;</P><P>证明:...</P>&nbsp;&nbsp;&nbsp; 先证明可表示性&nbsp; <P>&nbsp;&nbsp;&nbsp; 对n用归纳法.&nbsp;</P><P>&nbsp;&nbsp;&nbsp; 1)当n=1时命题成立&nbsp;</P><P>&nbsp;&nbsp;&nbsp; 2)设对小于n的正整数命题成立 对于n,存在k,满足设&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=93 src="timu.files/timu.h53.gif" width=175></P><P>则&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=20 src="timu.files/timu.h54.gif" width=113></P><P>可表示为不相同且不相邻的F数列的和。即&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=78 src="timu.files/timu.h55.gif" width=183></P><P>若</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=59 src="timu.files/timu.h56.gif" width=151> ,</P><P>则F<SUB>k</SUB>与F<SUB>k-1</SUB>可合并为F<SUB>k+1</SUB></P><P>命题得证。</P><P> </P><P> </P><P>12. 设空间的n个平面两两相交,每3个平面有且仅有一个公共点,任意4个平面都不共点。这样的n个平面把空间分割成多少个不重叠的域?&nbsp;</P><P>解:...&nbsp;</P>&nbsp;&nbsp;&nbsp; 设n个满足条件的平面把空间分成a<SUB>n</SUB>个域n-1个满足条件的平面把空间分成a<SUB>n-1</SUB>个域 则第n个平面与这n-1个平面有n-1条交线,且这些两两相交,任三线不共点。&nbsp; <P>&nbsp;&nbsp;&nbsp; 第n个平面被这n-1条线分成<IMG border=0 height=21 src="timu.files/timu.h57.gif" width=35>个域 增加了<IMG border=0 height=21 src="timu.files/timu.h58.gif" width=35>个域。可得&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=21 src="timu.files/timu.h59.gif" width=184></P><P>设&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=41 src="timu.files/timu.h60.gif" width=166></P><P>解得</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=126 src="timu.files/timu.h61.gif" width=116></P><P> </P><P> </P><P> </P><P>13. 相邻位不同为0的n位2进制数中一共出现了多少个0?&nbsp;</P><P>解:...&nbsp;</P>&nbsp;&nbsp;&nbsp; 设符合条件的n位二进制数的个数为h<SUB>n</SUB> 这些数中一共有a<SUB>n</SUB>个0&nbsp; <P>&nbsp;&nbsp;&nbsp; 当n位二进制数最高位为1时,符合条件的n位二进制数的个数为h<SUB>n-1</SUB></P><P>&nbsp;&nbsp;&nbsp;<SUB> </SUB>最高位为0时,次高位必为1符合条件的n位二进制数的个数为h<SUB>n-2</SUB></P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=20 src="timu.files/timu.h62.gif" width=213></P><P>即h<SUB>n</SUB>是F数列&nbsp;</P><P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <IMG border=0 height=106 src="timu.files/timu.h63.gif" width=199></P><P>特征方程为:&nbsp;</P>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -