⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 6_8.htm

📁 随着各行各业的发展和生产需要
💻 HTM
📖 第 1 页 / 共 2 页
字号:
    <td width="9%">-1/16</td>    <td width="9%">-1/8</td>    <td width="9%">0</td>    <td width="9%">0</td>  </tr>  <tr>    <td width="8%">A<sub>7</sub></td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">1</td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">0</td>    <td width="8%">21/2</td>    <td width="9%">3/2</td>    <td width="9%">-1</td>    <td width="9%">1</td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">-3</td>    <td width="9%"> </td>    <td width="9%"> </td>    <td width="9%"> </td>    <td width="9%">←λ</td>  </tr></table></div><p> </p><div align="left"><table border="1" width="85%">  <tr>    <td width="8%">B</td>    <td width="8%">C<sub>B</sub></td>    <td width="8%">C<sub>B</sub>B<sup>-1</sup></td>    <td width="8%">C</td>    <td width="8%">-3/4</td>    <td width="8%">20</td>    <td width="8%">-1/2</td>    <td width="8%">6</td>    <td width="9%">0</td>    <td width="9%">0</td>    <td width="9%">0</td>    <td width="9%">β</td>  </tr>  <tr>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">P<sub>0</sub></td>    <td width="8%">P<sub>1</sub></td>    <td width="8%">P<sub>2</sub></td>    <td width="8%">P<sub>3</sub></td>    <td width="8%">P<sub>4</sub></td>    <td width="9%">P<sub>5</sub></td>    <td width="9%">P<sub>6</sub></td>    <td width="9%">P<sub>7</sub></td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%">A<sub>3</sub></td>    <td width="8%">-1/2</td>    <td width="8%">1</td>    <td width="8%">0</td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">0</td>    <td width="9%">(2)</td>    <td width="9%">-6</td>    <td width="9%">0</td>    <td width="9%">0</td>  </tr>  <tr>    <td width="8%">A<sub>4</sub></td>    <td width="8%">6</td>    <td width="8%">-1</td>    <td width="8%">0</td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">1</td>    <td width="9%">1/3</td>    <td width="9%">-2/3</td>    <td width="9%">0</td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%">A<sub>7</sub></td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">1</td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">0</td>    <td width="9%">2</td>    <td width="9%">6</td>    <td width="9%">1</td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="9%">-1</td>    <td width="9%"> </td>    <td width="9%"> </td>    <td width="9%">←λ</td>  </tr></table></div><p> </p><div align="left"><table border="1" width="85%">  <tr>    <td width="8%">B</td>    <td width="8%">C<sub>B</sub></td>    <td width="8%">C<sub>B</sub>B<sup>-1</sup></td>    <td width="8%">C</td>    <td width="8%">-3/4</td>    <td width="8%">20</td>    <td width="8%">-1/2</td>    <td width="8%">6</td>    <td width="9%">0</td>    <td width="9%">0</td>    <td width="9%">0</td>    <td width="9%">β</td>  </tr>  <tr>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">P<sub>0</sub></td>    <td width="8%">P<sub>1</sub></td>    <td width="8%">P<sub>2</sub></td>    <td width="8%">P<sub>3</sub></td>    <td width="8%">P<sub>4</sub></td>    <td width="9%">P<sub>5</sub></td>    <td width="9%">P<sub>6</sub></td>    <td width="9%">P<sub>7</sub></td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%">A<sub>5</sub></td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="9%">1</td>    <td width="9%">-3</td>    <td width="9%">0</td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%">A<sub>4</sub></td>    <td width="8%">6</td>    <td width="8%">2</td>    <td width="8%">0</td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="9%">0</td>    <td width="9%">(1/3)</td>    <td width="9%">0</td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%">A<sub>7</sub></td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">1</td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="9%">0</td>    <td width="9%">2</td>    <td width="9%">1</td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="9%"> </td>    <td width="9%">-2</td>    <td width="9%"> </td>    <td width="9%">←λ</td>  </tr></table></div><p> </p><div align="left"><table border="1" width="85%">  <tr>    <td width="8%">B</td>    <td width="8%">C<sub>B</sub></td>    <td width="8%">C<sub>B</sub>B<sup>-1</sup></td>    <td width="8%">C</td>    <td width="8%">-3/4</td>    <td width="8%">20</td>    <td width="8%">-1/2</td>    <td width="8%">6</td>    <td width="9%">0</td>    <td width="9%">0</td>    <td width="9%">0</td>    <td width="9%">β</td>  </tr>  <tr>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">P<sub>0</sub></td>    <td width="8%">P<sub>1</sub></td>    <td width="8%">P<sub>2</sub></td>    <td width="8%">P<sub>3</sub></td>    <td width="8%">P<sub>4</sub></td>    <td width="9%">P<sub>5</sub></td>    <td width="9%">P<sub>6</sub></td>    <td width="9%">P<sub>7</sub></td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%">A<sub>5</sub></td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">1/4</td>    <td width="8%">-8</td>    <td width="8%">-1</td>    <td width="8%">9</td>    <td width="9%">1</td>    <td width="9%">0</td>    <td width="9%">0</td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%">A<sub>6</sub></td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">1/2</td>    <td width="8%">-12</td>    <td width="8%">-1/2</td>    <td width="8%">3</td>    <td width="9%">0</td>    <td width="9%">1</td>    <td width="9%">0</td>    <td width="9%"> </td>  </tr>  <tr>    <td width="8%">A<sub>7</sub></td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">1</td>    <td width="8%">0</td>    <td width="8%">0</td>    <td width="8%">(1)</td>    <td width="8%">0</td>    <td width="9%">0</td>    <td width="9%">0</td>    <td width="9%">1</td>    <td width="9%">1</td>  </tr>  <tr>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">0</td>    <td width="8%"> </td>    <td width="8%"> </td>    <td width="8%">-1/2</td>    <td width="8%"> </td>    <td width="9%"> </td>    <td width="9%"> </td>    <td width="9%"> </td>    <td width="9%">←λ</td>  </tr></table></div><p>显然,目标函数始终没有改善。<br><strong></strong></p><p><strong>3.小扰动法.</strong><br><strong>定理</strong> 存在 ☆<sub>0</sub>>0,只要☆∈(0 ,☆<sub>0</sub> ),线性规划问题 <br>maxz=CX<br>AX=b+AE<br>X≥0.<br>是非退化的,其中E=(☆ ☆<sup>2</sup> … ☆<sup>n+m</sup> ),可以认为 b+AE>0<br>注意:① AX=b, b≥0,对于b的0元,A对应行左起非0元是正数,若为负可两边同乘-1.故b+AE>0.<br>② ( A ┆b+AE )   ( P┆P0+PE )<br>③当β取O(☆<sup>i</sup>)时,实际只要看P中行向量按字典序的大小.<br>P<sub>( i )</sub>:P的第 i 行.<br>P<sub>i</sub>:P的第 i 列.<br>b<sub>i</sub>=b<sub>j</sub>=0,a<sub>k</sub>进入,看P<sub>(i)</sub>/α<sub>ik</sub>,P<sub>(j)</sub>/α<sub>jk</sub>哪一个字典序小,<br>α<sub>ik</sub>>0, α<sub>jk</sub>>0,字典序小的退出. <br>因而可略去AE,而观察P的行的字典序的大小,用字典序或小扰动法<br>时无法用改善的单纯形表格.字典序就是小扰动.</p><p><br><strong>证</strong> 设B<sub>i</sub>是A中的m列构成的可逆矩阵.<br>i=1 , 2, … ,k.k≤C(m+n,m).<br>AX<sub>i</sub>=A(X<sub>Bi</sub> X<sub>Ni</sub>)<sup>T</sup>=( B<sub>i</sub> ┆N<sub>i</sub> ) (X<sub>Bi</sub> X<sub>Ni</sub>)<sup>T</sup>=B<sub>i</sub>X<sub>Bi</sub><br>=b+B<sub>i</sub>E<sub>Bi</sub>+N<sub>i</sub>E<sub>Ni</sub>,又因为<br>X<sub>bi</sub>=B<sub>i</sub><sup>-1</sup>b+E<sub>bi</sub>+B<sub>i</sub><sup>-1</sup>N<sub>i</sub>E<sub>Ni</sub>,右边的每个ε的多项式,<br>m个多项式有最小正根☆<sub>i</sub>.令☆<sub>0</sub>=min{☆<sub>i</sub>|i=1 , 2, … ,k}.<br>当☆∈( 0, ☆<sub>0</sub>)时,X<sub>bi</sub>中无0元.即对应的线性规划问题是非退化的.<br>证毕.<br></p><p>小扰动法和二阶段法是不同的.在退化情况下,可能出现循环不已的情形,<br>此时,用二阶段法无能为力,而小扰动法能从退化情况中摆脱出来.<br><br><strong>4.Bland方法</strong>.<br>( a ) 若干基可进入,选下标最小的进入;<br>( b ) 若干基可退出,选小标最小的退出;<br>遵循此规则,可避免循环.<br></p></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -