⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cfi_probe.c

📁 vivi源代码专为三星公司arm处理器开发的启动代码
💻 C
字号:
/* vivi/drivers/mtd/cfi-probe.c: Common Flash Interface probe code.
 *
 * Based on linux/drivers/mtd/chips/cfi_probe.c
 *
 * $Id: cfi_probe.c,v 1.1.1.1 2004/02/04 06:22:25 laputa Exp $
 *
 */
#include "config.h"
#include "mtd/map.h"
#include "mtd/cfi.h"
#include "mtd/gen_probe.h"
#include "heap.h"
#include "printk.h"
#include <types.h>
#include <errno.h>

#ifdef CONFIG_DEBUG_CFI
static void print_cfi_ident(struct cfi_ident *);
#endif

static int cfi_probe_chip(struct map_info *map, __u32 base,
                          struct flchip *chips, struct cfi_private *cfi);
static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi);

struct mtd_info *cfi_probe(struct map_info *map);

/*
 * check for QRY.
 * in: interleave, type, mode
 * ret: table index, < 0 for error
 */

static inline int qry_present(struct map_info *map, __u32 base, 
                              struct cfi_private *cfi)
{
	int osf = cfi->interleave * cfi->device_type;	/* scale factor */

	if (cfi_read(map, base+osf*0x10) == cfi_build_cmd('Q', map, cfi) &&
	    cfi_read(map, base+osf*0x11) == cfi_build_cmd('R', map, cfi) &&
	    cfi_read(map, base+osf*0x12) == cfi_build_cmd('Y', map, cfi))
		return 1; 	/* ok */

	return 0;	/* nothing found */
}


static int cfi_probe_chip(struct map_info *map, __u32 base,
                          struct flchip *chips, struct cfi_private *cfi)
{
	int i;

	if ((base + 0) >= map->size) {
		printk("Probe at base[0x00](0x%08lx) past the end of map(0x%08lx)\n",
			(unsigned long)base, map->size - 1);
		return 0;
	}
	if ((base + 0xff) >= map->size) {
		printk("Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n",
			(unsigned long)base + 0x55, map->size - 1);
		return 0;
	}
	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);

	if (!qry_present(map, base, cfi))
		return 0;

	if (!cfi->numchips) {
		/* 
		 * This is the first time we're called. Set up the CFI
		 * stuff accordingly and return 
		 */
		return cfi_chip_setup(map, cfi);

	}

	/* Check each previous chip to see if it's an alias */
	for (i = 0; i < cfi->numchips; i++) {
		/* This chip should be in read mode if it's one
		 * we've alread touched. */
		if (qry_present(map, chips[i].start,cfi)) {
			/* Eep. This chip also had the QRY marker.
			 * Is it an alias for the new one? */
			cfi_send_gen_cmd(0xF0, 0, chips[i].start, map, cfi, cfi->device_type, NULL);

			/* If the QRY marker goes away, it's an alias */
			if (!qry_present(map, chips[i].start, cfi)) {
				printk("%s: Found an alias at 0x%x for the chip at 0x%lx\n", 
					map->name, base, chips[i].start);
				return 0;
			}
			/* Yes, it's actually got QRY for data. Most
			 * unfortunate. Stick the new chip in read mode
			 * too end if it's the same, assume it's an alias. */
			/* FIXME: Use other modes to do a proper check */
			cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
			if (qry_present(map, base, cfi)) {
				printk("%s: Found an alias at 0x%x for the chip at 0x%lx\n",
					map->name, base, chips[i].start);
				return 0;
			}
		}
	}

	/* OK, if we got to here, then none of the previous chips appear to
	 * be aliases for the current one. */
	if (cfi->numchips == MAX_CFI_CHIPS) {
		printk("%s: Too many flash chips detected. Increase MAX_CFI_CHIPS from %d.\n", map->name, MAX_CFI_CHIPS);
		/* Doesn't matter about resetting it to Read Mode - we're not going to talk to anyway */
		return -1;
	}
	chips[cfi->numchips].start = base;
	cfi->numchips++;

	/* Put it back into Read Mode */
	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);

	printk("%s: Found %d x%d devices at 0x%x in %d-bit mode\n",
		map->name, cfi->interleave, cfi->device_type*8, base,
		map->buswidth*8);

	return 1;
}

static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi)
{
	int ofs_factor = cfi->interleave * cfi->device_type;
	__u32 base = 0;
	int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor);
	int i;

#ifdef CONFIG_DEBUG_CFI
	printk("Number of erase regions: %d\n", num_erase_regions);
#endif
	if (!num_erase_regions)
		return 0;

	cfi->cfiq = mmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4);

	if (!cfi->cfiq) {
		printk("%s: mmalloc failed for CFI ident structure\n", map->name);
		return 0;
	}
	memset(cfi->cfiq, 0, sizeof(struct cfi_ident));

	/* Read the CFI info structure */
	for (i = 0; i < (sizeof(struct cfi_ident) + num_erase_regions * 4); i++) {
		((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map, base + (0x10 + i)*ofs_factor);
	}

#ifdef CONFIG_DEBUG_CFI
	/* Dump the information therin */
	print_cfi_ident(cfi->cfiq);
#endif

	for (i = 0; i < cfi->cfiq->NumEraseRegions; i++) {
		cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[i];

#ifdef CONFIG_DEBUG_CFI
		printk("  erase Region #%d: BlockSize 0x%4.4x bytes, %d blocks\n",
			i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff,
			(cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1);
#endif
	}
	
	/* Put it back into Read Mode */	
	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);

	return 1;
}

#ifdef CONFIG_DEBUG_CFI
static char *vendorname(__u16 vendor) 
{
        switch (vendor) {
        case P_ID_NONE:
                return "None"; 
         
        case P_ID_INTEL_EXT:
                return "Intel/Sharp Extended";
         
        case P_ID_AMD_STD:
                return "AMD/Fujitsu Standard";
         
        case P_ID_INTEL_STD:
                return "Intel/Sharp Standard";
         
        case P_ID_AMD_EXT:
                return "AMD/Fujitsu Extended";
         
        case P_ID_MITSUBISHI_STD:
                return "Mitsubishi Standard";
         
        case P_ID_MITSUBISHI_EXT:
                return "Mitsubishi Extended";
         
        case P_ID_RESERVED:
                return "Not Allowed / Reserved for Future Use";
         
        default:
                return "Unknown";
        }
}

static void print_cfi_ident(struct cfi_ident *cfip)
{
#if 0
        if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') {
                printk("Invalid CFI ident structure.\n");
                return;
        }       
#endif          
        printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID));
        if (cfip->P_ADR)
                printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR);
        else
                printk("No Primary Algorithm Table\n");
        
        printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID));
        if (cfip->A_ADR)
                printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR);
        else
                printk("No Alternate Algorithm Table\n");


        printk("Vcc Minimum: %x.%x V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf);
        printk("Vcc Maximum: %x.%x V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf);
        if (cfip->VppMin) {
                printk("Vpp Minimum: %x.%x V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf);
                printk("Vpp Maximum: %x.%x V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf);
        }
        else
                printk("No Vpp line\n");

        printk("Typical byte/word write timeout: %d 祍\n", 1<<cfip->WordWriteTimeoutTyp);
        printk("Maximum byte/word write timeout: %d 祍\n", (1<<cfip->WordWriteTimeoutMax) * (1<<cfip->WordWriteTimeoutTyp));

        if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) {
                printk("Typical full buffer write timeout: %d 祍\n", 1<<cfip->BufWriteTimeoutTyp);
                printk("Maximum full buffer write timeout: %d 祍\n", (1<<cfip->BufWriteTimeoutMax) * (1<<cfip->BufWriteTimeoutTyp));
        }
        else
                printk("Full buffer write not supported\n");

        printk("Typical block erase timeout: %d 祍\n", 1<<cfip->BlockEraseTimeoutTyp);
        printk("Maximum block erase timeout: %d 祍\n", (1<<cfip->BlockEraseTimeoutMax) * (1<<cfip->BlockEraseTimeoutTyp));
        if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) {
                printk("Typical chip erase timeout: %d 祍\n", 1<<cfip->ChipEraseTimeoutTyp);
                printk("Maximum chip erase timeout: %d 祍\n", (1<<cfip->ChipEraseTimeoutMax) * (1<<cfip->ChipEraseTimeoutTyp));
        }
        else
                printk("Chip erase not supported\n");

        printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20));
        printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc);
        switch(cfip->InterfaceDesc) {
        case 0:
                printk("  - x8-only asynchronous interface\n");
                break;

        case 1:
                printk("  - x16-only asynchronous interface\n");
                break;

        case 2:
                printk("  - supports x8 and x16 via BYTE# with asynchronous interface\n");
                break;

        case 3:
                printk("  - x32-only asynchronous interface\n");
                break;

        case 65535:
                printk("  - Not Allowed / Reserved\n");
                break;

        default:
                printk("  - Unknown\n");
                break;
        }

        printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize);
        printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions);

}
#endif /* CONFIG_DEBUG_CFI */

static struct chip_probe cfi_chip_probe = {
	name: "CFI",
	probe_chip: cfi_probe_chip
};

struct mtd_info *cfi_probe(struct map_info *map)
{
	/*
	 * Just use the generic probe stuff to call our CFI-specific
	 * chip_probe routine in all the possible permutations, etc.
	 */
	return mtd_do_chip_probe(map, &cfi_chip_probe);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -