📄 binmodel.m
字号:
function varargout = binmodel(varargin)
%BINMODEL Converts nonlinear mixed binary expression to linear model
%
% [plinear1,..,plinearN,F] = BINMODEL(p1,...,pN,D) is used to convert
% nonlinear expressions involving a mixture of continuous and binary
% variables to the correponding linear model, using auxilliary variables
% and constraints to model nonlinearities
%
% The input arguments p are polynomial SDPVAR objects. If all involved
% variables are binary (defined using BINVAR), arbitrary polynomials can be
% linearized.
%
% If an input p contains continuous variables, the continuous variables
% may only enter linearly (i.e. degree w.r.t continuous variables should
% be at most 1). More over, all continuous variables must be explicitly
% bounded in the SET object D.
%
% Example
% binvar a b
% sdpvar x y
% [plinear1,plinear2,F] = binmodel(a^3+b,a*b);
% [plinear1,plinear2,F] = binmodel(a^3*x+b*y,a*b*x, set(-2 <=[x y] <=2));
%
% See also BINARY, BINVAR, SOLVESDP
% Author Johan L鰂berg
% $Id: binmodel.m,v 1.5 2007/06/16 10:33:41 joloef Exp $
all_linear = 1;
p = [];
n_var = 0;
Foriginal = set([]);
for i = 1:nargin
switch class(varargin{i})
case 'sdpvar'
[n(i),m(i)] = size(varargin{i});
p = [p;varargin{i}(:)];
if degree(varargin{i}) > 1
all_linear = 0;
end
n_var = n_var + 1;
case 'lmi'
Foriginal = Foriginal + varargin{i};
% LU = getbounds(varargin{i});
% LU = extract_bounds_from_abs_operator(LU,yalmip('extstruct'),yalmip('extvariables'));
% yalmip('setbounds',1:nv,LU(:,1),LU(:,2));
otherwise
error('Arguments should be SDPVAR or SET objects')
end
end
if length(Foriginal)>0
nv = yalmip('nvars');
yalmip('setbounds',1:nv,repmat(-inf,nv,1),repmat(inf,nv,1));
LU = getbounds(Foriginal);
LU = extract_bounds_from_abs_operator(LU,yalmip('extstruct'),yalmip('extvariables'));
yalmip('setbounds',1:nv,LU(:,1),LU(:,2));
end
if all_linear
varargout = varargin;
return
end
plinear = p;
F = Foriginal;
% Get stuff
vars = getvariables(p);
basis = getbase(p);
[mt,vt] = yalmip('monomtable');
binary = yalmip('binvariables');
% Fix data (monom table not guaranteed to be square)
if size(mt,1) > size(mt,2)
mt(end,size(mt,1)) = 0;
end
non_binary = setdiff(1:size(mt,2),binary);
if any(sum(mt(vars,non_binary),2) >1)
error('Expression has to be linear in the continuous variables')
end
% These are the original monomials
vecvar = recover(vars);
linear = find(vt(vars) == 0);
quadratic = find(vt(vars) == 2);
bilinear = find(vt(vars) == 1);
polynomial = find(vt(vars) == 3);
% replace x^2 with x (can only be binary expression, since we check for
% continuous nonlinearities above)
if ~isempty(quadratic)
[ii,jj] = find(mt(vars(quadratic),:));
z_quadratic = recover(jj);
else
quadratic = [];
z_quadratic = [];
end
% replace x*y with z, x>z, x>z, 1+z>x+y
if ~isempty(bilinear)
z_bilinear = sdpvar(length(bilinear),1);
[jj,ii] = find(mt(vars(bilinear),:)');
xi = jj(1:2:end);
yi = jj(2:2:end);
x = recover(xi);
y = recover(yi);
if all(ismember(xi,binary)) & all(ismember(yi,binary))
% fast case for binary*binary
F = F + set(x >= z_bilinear) + set(y >= z_bilinear) + set(1+z_bilinear > x + y) + set(0 <= z_bilinear <= 1);
else
for i = 1:length(bilinear)
if ismember(xi(i),binary) & ismember(yi(i),binary)
F = F + set(x(i) >= z_bilinear(i)) + set(y(i) >= z_bilinear(i)) + set(1+z_bilinear(i) > x(i) + y(i)) + set(0 <= z_bilinear(i) <= 1);
elseif ismember(xi(i),binary)
F = F + binary_times_cont(x(i),y(i), z_bilinear(i));
else
F = F + binary_times_cont(y(i),x(i), z_bilinear(i));
end
end
end
else
bilinear = [];
z_bilinear = [];
end
%general case a bit slower
if ~isempty(polynomial)
z_polynomial = sdpvar(length(polynomial),1);
xvar = [];
yvar = [];
for i = 1:length(z_polynomial)
% Get the monomial powers, clear out the
the_monom = mt(vars(polynomial(i)),:);
if any(the_monom(non_binary))
% Tricky case, x*polynomial(binary)
% Start by first modeling the binary part
the_binary_monom = the_monom;the_binary_monom(non_binary) = 0;
[ii,jj] = find(the_binary_monom);
x = recover(jj);
F = F + set(x >= z_polynomial(i)) + set(length(x)-1+z_polynomial(i) > sum(x)) + set(0 <= z_polynomial(i) <= 1);
% Now define the actual variable
temp = z_polynomial(i);z_polynomial(i) = sdpvar(1,1);
the_real_monom = the_monom;the_real_monom(binary)=0;
[ii,jj] = find(the_real_monom);
x = recover(jj);
F = F + binary_times_cont(temp,x,z_polynomial(i));
else
% simple case, just binary terms
[ii,jj] = find(the_monom);
x = recover(jj);
F = F + set(x >= z_polynomial(i)) + set(length(x)-1+z_polynomial(i) > sum(x)) + set(0 <= z_polynomial(i) <= 1);
end
end
else
z_polynomial = [];
polynomial = [];
end
% ii = [linear quadratic bilinear polynomial];
% jj = ones(length(ii),1);
% kk = [recover(vars(linear));z_quadratic;z_bilinear;z_polynomial];
% sparse([linear quadratic bilinear polynomial],1,[recover(vars(linear));z_quadratic;z_bilinear;z_polynomial])
ii = [linear quadratic bilinear polynomial];
jj = ones(length(ii),1);
kk = [recover(vars(linear));z_quadratic;z_bilinear;z_polynomial];
vecvar = sparse(ii(:),jj(:),kk(:));
% Recover the whole thing
plinear = basis*[1;vecvar];
% And now get the original sizes
top = 1;
for i = 1:n_var
varargout{i} = reshape(plinear(top:top+n(i)*m(i)-1),n(i),m(i));
top = top + n(i)*m(i);
end
varargout{end+1} = F;
function F = binary_times_cont(d,y, z)
[M,m,infbound] = derivebounds(y);
if infbound
error('Some of your continuous variables are not explicitly bounded.')
end
F = set((1-d)*M >= y - z >= m*(1-d)) + set(d*m <= z <= d*M);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -