📄 convert_perspective_log.m
字号:
function p = convert_perspective_log(p)
p.kept = 1:length(p.c);
if isempty(p.evalMap)
return
end
if ~any(p.variabletype == 4)
return
end
variableIndex = [];
for i=1:length(p.evalMap)
variableIndex = [variableIndex p.evalMap{i}.variableIndex];
end
removable = [];
for i = 1:length(p.evalMap)
if strcmp(p.evalMap{i}.fcn,'log')
argument = p.evalMap{i}.variableIndex;
if length(argument) == 1
if p.variabletype(argument)==4
monoms = p.monomtable(argument,:);
if nnz(monoms) == 2
k = find(monoms);
p1 = monoms(k(1));
p2 = monoms(k(2));
if isequal(sort([p1 p2]) , [-1 1])
if p2>p1
x = k(2);
y = k(1);
else
x = k(1);
y = k(2);
end
% Ok, so we have log(x/y)
% is this multiplied by x somewhere
logxy = p.evalMap{i}.computes;
enters_in = find(p.monomtable(:,logxy));
other = setdiff(enters_in,p.evalMap{i}.computes);
if length(nnz(other)) == 1
monomsxlog = p.monomtable(other,:);
if nnz(monomsxlog) == 2 & (monomsxlog(x) == 1)
% Hey, x*log(x/y)!
% we change this monomial variable to a
% callback variable
p.evalMap{i}.fcn = 'perspective_log';
p.evalMap{i}.arg{1} = recover([x;y]);
p.evalMap{i}.arg{2} = [];
p.evalMap{i}.variableIndex = [x y];
p.evalMap{i}.computes = other;
p.evalMap{i}.properties.bounds = @plog_bounds;
p.evalMap{i}.properties.convexhull = @plog_convexhull;
p.evalMap{i}.properties.derivative = @plog_derivative;
p.variabletype(other) = 0;
p.monomtable(other,:) = 0;
p.monomtable(other,other) = 1;
p.evalVariables(i) = other;
% Figure out if x/y can be removed
% This is possible if the x/y term never is
% used besides inside the log term
if nnz(p.F_struc(:,1+argument)) == 1 & p.c(argument) == 0 & nnz(argument == variableIndex) == 1
removable = [removable argument];
end
end
end
end
end
end
end
end
end
kept = 1:length(p.c);
kept = setdiff(kept,removable);
if length(removable) > 0
kept = 1:length(p.c);
kept = setdiff(kept,removable);
[ii,jj,kk] = find(p.F_struc(:,1+removable));
p.F_struc(:,1+removable) = [];
p.F_struc(ii,:) = [];
p.K.l = p.K.l - length(removable);
p.c(removable) = [];
p.Q(removable,:) = [];
p.Q(:,removable) = [];
p.variabletype(removable) = [];
p.monomtable(:,removable) = [];
p.monomtable(removable,:) = [];
for i = 1:length(p.evalVariables)
p.evalVariables(i) = find(p.evalVariables(i) == kept);
for j = 1:length(p.evalMap{i}.variableIndex)
p.evalMap{i}.variableIndex(j) = find(p.evalMap{i}.variableIndex(j) == kept);
end
for j = 1:length(p.evalMap{i}.computes)
p.evalMap{i}.computes(j) = find(p.evalMap{i}.computes(j) == kept);
end
end
p.lb(removable) = [];
p.ub(removable) = [];
p.used_variables(removable) = [];
end
function dp = plog_derivative(x)
dp = [log(x(1)/x(2)) + 1;-x(1)/x(2)];
function [L,U] = plog_bounds(xL,xU)
xU(isinf(xU)) = 1e12;
x1 = xL(1)*log(xL(1)/xL(2));
x2 = xU(1)*log(xU(1)/xL(2));
x3 = xL(1)*log(xL(1)/xU(2));
x4 = xU(1)*log(xU(1)/xU(2));
U = max([x1 x2 x3 x4]);
if (exp(-1)*xU(2) > xL(1)) & (exp(-1)*xU(2) < xU(1))
L = -exp(-1)*xU(2);
else
L = min([x1 x2 x3 x4]);
end
function [Ax,Ay,b] = plog_convexhull(L,U);%xL,xU)
%
% Ax = [];
% Ay = [];
% b = [];
% return
% L = [1 2];
% U = [3 6];
p1 = [L(1);L(2)];
p2 = [U(1);L(2)];
p3 = [L(1);U(2)];
p4 = [U(1);U(2)];
pm = [(L(1) + U(1))/2;(L(2) + U(2))/2];
z1 = L(1)*log(L(1)/L(2));
z2 = U(1)*log(U(1)/L(2));
z3 = L(1)*log(L(1)/U(2));
z4 = U(1)*log(U(1)/U(2));
zm = pm(1)*log(pm(1)/pm(2));
g1 = [log(L(1)/L(2)) + 1;-L(1)/L(2)];
g2 = [log(U(1)/L(2)) + 1;-U(1)/L(2)];
g3 = [log(L(1)/U(2)) + 1;-L(1)/U(2)];
g4 = [log(U(1)/U(2)) + 1;-U(1)/U(2)];
gm = [log(pm(1)/pm(2)) + 1;-pm(1)/pm(2)];
%sdpvar x y z
%C = [max([z1 z2 z3 z4]) > z > z1 + g1'*([x;y] - p1),z > z2 + g2'*([x;y] - p2), z > z3 + g3'*([x;y] - p3),z > z4 + g4'*([x;y] - p4),[x y]>U, L < [x y]]
Ax = [0 0;g1';g2';g3';g4';gm'];%;eye(2);-eye(2)];
Ay = [1;-1;-1;-1;-1;-1];%;0;0;0;0];
b = [max([z1 z2 z3 z4]);g1'*p1-z1;g2'*p2-z2;g3'*p3-z3;g4'*p4-z4;gm'*pm-zm];%;U(:);-L(:)];
xL = L(1);
yL = L(2);
xU = U(1);
yU = U(2);
p1 = [xL;yL;z1];
p2 = [xU;yL;z2];
p3 = [xL;yU;z3];
p4 = [xU;yU;z4];
U = max([z1 z2 z3 z4]);
H1 = null([p2-p1 p3-p1]')';
H2 = null([p3-p2 p4-p2]')';
A = [H1;H2];
b = [b;H1*p1;H2*p2];
Ax = [Ax;A(:,1:2)];
Ay = [Ay;A(:,3)];
%
% for i = 1:100
% for j = 1:100
% xx(i,j) = xL + (xU-xL)*(i-1)/99;
% yy(i,j) = yL + (yU-yL)*(j-1)/99;
% zz(i,j) = xx(i,j)*log(xx(i,j)/yy(i,j));
% end
% end
% xx=xx(:);
% yy=yy(:);
% zz = zz(:);
% maxx = -inf;
% for i = 1:length(xx)
% maxx = max([maxx max(Ax*[xx(i);yy(i)] + Ay*zz(i) - b)]);
% end
% maxx
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -