⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 filter_enumeration.m

📁 matlab波形优化算法经常要用到的matlab toolbox工具箱:yalmip
💻 M
字号:
function F = filter_enumeration(F_xw,Zmodel,x,w,ops)

if length(F_xw) == 0
    F = [];
    return;
else
 
    if any(Zmodel.K.q) | any(Zmodel.K.s)
        error('Only polytope uncertainty supported in duality based robustification');
    else
        % FIX : Assumes all uncertainty in all constraints
        K = Zmodel.K;
        A = -Zmodel.F_struc((1+K.f):(K.f + K.l),2:end);
        b =  Zmodel.F_struc((1+K.f):(K.f + K.l),1);

        try
            % Some preprocessing to extract bounds from equality
            % constraints in order to make the uncertainty polytope
            % bounded (required since we are going to run vertex
            % enumeration)
            % We might have x>=0, sum(x)=1, and this code simply extracts
            % the implied bounds x<=1
            [lo,up] = findulb(Zmodel.F_struc(1:K.f + K.l,:),K);
            Zmodel.lb = lo;Zmodel.ub = up;
            Zmodel = presolve_bounds_from_equalities(Zmodel);
            up = Zmodel.ub;
            lo = Zmodel.lb;
            upfi = find(~isinf(up));
            lofi = find(~isinf(lo));
            aux = Zmodel;
            aux.F_struc = [aux.F_struc;-lo(lofi) sparse(1:length(lofi),lofi,1,length(lofi),size(A,2))];
            aux.F_struc = [aux.F_struc;up(upfi) -sparse(1:length(upfi),upfi,1,length(upfi),size(A,2))] ;
            aux.K.l = aux.K.l + length(lofi) + length(upfi);
            K = aux.K;
            A = -aux.F_struc((1+K.f):(K.f + K.l),2:end);
            b =  aux.F_struc((1+K.f):(K.f + K.l),1);

            vertices = extreme(polytope(A,b))';
        catch
            disp('You probably need to install MPT (needed for vertex enumeration)')
            disp('http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php?n=Solvers.MPT')
            disp('Alternatively, you need to add bounds on your uncertainty.')
            error('MPT missing');
        end
        % The vertex enumeration was done without any equality constraints.
        % We know check all vertices so see if they satisfy equalities.
        if K.f > 0
            Aeq = -Zmodel.F_struc(1:K.f,2:end);
            beq =  Zmodel.F_struc(1:K.f,1);
            feasible = sum(abs(Aeq*vertices - repmat(beq,1,size(vertices,2))),1) < 1e-6;
            vertices = vertices(:,feasible);
            if isempty(feasible)
                error('The uncertainty space is infeasible.')
            end
        end

        % We know replace all occurances of w with the fixed vertices
        % Doing LP constraints in a vectorized manner saves a lot of time
        F_xw_lp = F_xw(find(is(F_xw,'elementwise')));
        F_xw_socp_sdp = F_xw -  F_xw_lp;
        F = set([]);       
        if length(F_xw_lp)>0
            rLP = [];           
            for i = 1:size(vertices,2)
                rLP = [rLP;replace(sdpvar(F_xw_lp),w,vertices(:,i),0)];                
            end
            % Easily generates redundant constraints
            [aux,index] = uniquesafe(getbase(rLP),'rows');
            F = set(rLP(index(randperm(length(index)))) >= 0);
        end

        % Remaining conic stuff
        for j = 1:length(F_xw_socp_sdp)
            for i = 1:size(vertices,2)
                F = F + set(replace(F_xw_socp_sdp(j),w,vertices(:,i),0));
            end
        end
    end
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -