📄 robustify.m
字号:
function [F,h,failure] = robustify(F,h,ops,w)
%ROBUSTIFY Derives robust counterpart.
%
% [Frobust,objrobust,failure] = ROBUSTIFY(F,h,options) is used to derive
% the robust counterpart of an uncertain YALMIP model.
%
% min h(x,w)
% subject to
% F(x,w) >(=) 0 for all w in W
%
% The constraints and objective have to satisfy a number of conditions for
% the robustification to be tractable. Please refer to the YALMIP Wiki for
% the current assumptions (this is constantly evolving)
%
% Some options for the robustification strategies can be altered via the
% solver tag 'robust' in sdpsettings
% 'robust.lplp' : Controls how linear constraints with affine
% parameterization in an uncertainty with polytopic
% description is handled. Can be either 'duality' or
% 'enumeration'
% 'polya' : Controls the relaxation order of polynomials. If set to
% NAN, the polynomials will be eliminated by forcing the
% coefficients to zero
%
% See also UNCERTAIN
% Author Johan L鰂berg
% $Id: robustify.m,v 1.39 2007/08/29 13:17:04 joloef Exp $
if nargin < 3
ops = [];
end
if nargin < 4
w = [];
end
if isempty(w)
unc_declarations = is(F,'uncertain');
if any(unc_declarations)
w = recover(getvariables(sdpvar(F(find(unc_declarations)))));
F = F(find(~unc_declarations));
else
error('There is no uncertainty definition in the model.')
end
end
if isempty(ops)
ops = sdpsettings;
end
% Figure out which variables are uncertain, certain, and lifted variables
% in the uncertainty description (this code is slow and buggy as ....)
[x,w,x_variables,w_variables,aux_variables,F,failure] = robust_classify_variables(F,h,ops,w);
if failure
return
end
% Integer variables are OK in x, but not in the uncertainty (robustification
% is based on strong duality in w-space)
integervars = [yalmip('binvariables') yalmip('intvariables')];
ind = find(is(F,'integer') | is(F,'binary'));
if ~isempty(ind)
integervars = [integervars getvariables(F(ind))];
if any(ismember(w_variables,integervars))
failure = 1;
return
end
end
% Find uncertainty description, uncertain and certain constraints
F_w = set([]);
F_x = set([]);
F_xw = set([]);
for i = 1:length(F)
if all(ismember(depends(F(i)),w_variables))
% Uncertainty definition
F_w = F_w + F(i);
elseif all(ismember(depends(F(i)),x_variables))
% Certain constraint
F_x = F_x + F(i);
else
% Uncertain constraint
F_xw = F_xw + F(i);
end
end
% Limitation in the modelling language...
if ~isempty(intersect(intersect(depends(F_xw),depends(F_w)),aux_variables))
disp('You are most likely using a nonlinear operator to describe the');
disp('uncertainty set (such as norm(w,1) <=1). This is currently not');
disp('supported. Please model the constraint manually.');
error('Uncertain model does not satisfy assumptions (nonlinear operator on uncertainty in uncertain constraint)');
end
if length(F_w)==0
error('There is no uncertainty description in the model.');
end
% Some pre-calc
xw = [x;w];
xind = find(ismembc(getvariables(xw),getvariables(x)));
wind = find(ismembc(getvariables(xw),getvariables(w)));
% Analyze the objective and try to rewrite any uncertainty into the format
% assumed by YALMIP (
if ~isempty(h)
[Q,c,f,dummy,nonquadratic] = vecquaddecomp(h,xw);
Q = Q{1};
c = c{1};
f = f{1};
if nonquadratic
error('Objective can be at most quadratic, with the linear term uncertain');
end
Q_ww = Q(wind,wind);
Q_xw = Q(xind,wind);
Q_xx = Q(xind,xind);
c_x = c(xind);
c_w = c(wind);
if nnz(Q_ww) > 0
error('Objective can be at most quadratic, with the linear term uncertain');
end
% Separate certain and uncertain terms, place uncertain terms in the
% constraints instead
if is(h,'linear')
if isempty(intersect(getvariables(w),getvariables(h)))
h_fixed = h;
else
sdpvar t
F_xw = F_xw + set(h < t);
h_fixed = t;
x = [x;t];
end
else
h_fixed = x'*Q_xx*x + c_x'*x + f;
h_uncertain = 2*w'*Q_xw'*x + c_w'*w;
if ~isa(h_uncertain,'double')
sdpvar t
F_xw = F_xw + set(h_uncertain < t);
h_fixed = h_fixed + t;
x = [x;t];
end
end
else
h_fixed = [];
end
% Convert quadratic constraints in uncertainty model to SOCPs. This will
% enable us to use duality based removal of uncertainties in linear
% inequalities
F_w = convertquadratics(F_w);
% Export uncertainty model to numerical format
ops.solver = '';
[aux1,aux2,aux3,Zmodel] = export(F_w,[],ops,[],[],1);
if ~isempty(Zmodel)
if length(Zmodel.c) ~= length(w)
error('Some uncertain variables are unconstrained.')
end
else
error('Failed when exporting a model of the uncertainty.')
end
% The uncertainty model is in the complete w-space. However, it might
% happen that the uncertainty is separable in some sense. Find groups of
% uncertain variables that can be treated separately.
% FIXME: This structure is currently not exploited
% uncertaintyGroups = find_groups(Zmodel);
% Code will be added to detect uncertainty cases in a more general and
% modular way. Additional code will also be added to find hidden simple
% structures, such as norm(w,1)<1, which currently is treated as a general
% polytopic uncertainty, since the expansion hides the simplicity
% 'Box', 'Simplex', 'Conic', 'Polytopic', '2-norm', '1-norm', 'inf-norm'
% [uncertaintyTypes] = classify_uncertainty(Zmodel,uncertaintyGroups)
% Temporary conversion of bounded variables that have been modelled using
% the norm operator (remove the epigraph variable to ensure explicit
% maximization is used). This will be generalized in the next version
Zmodel = convertuncertainty(Zmodel);
% OK, we are done with the initial analysis of the involved variables, and
% check of the objective function.
% At this point, we have to decide on the algorithm we should use for
% robustifying the constraints. There are a couple of alternatives,
% depending on uncertainty and constraints
% 1. Polya: Polynomial uncertainty dependence, simplex uncertainty,
% can only be applied on LP constraints
% 2. Elimination: Last resort, tries to cancel all nonlinear uncertainties
% by setting coefficients to zero
% 3. Explicit: Linear uncertainty dependence, box-model uncertainty, can
% only be applied on LP constraints
% 4a. Enumeration:Linear uncertainty dependence, polytopic uncertainty,
% arbitrary type of constraints (convex)
% 4b. Duality: Linear uncertainty dependence, conic uncertainty, can
% only be applied on LP constraints
% Initialize a set of constraints that correspond to robustified
% constraints, and constraints related to Polyas theorem, and elimination
% of nonlinear terms and uncertain equalities
F_robust = set([]);
% Since nonlinearities have to be eliminated before standard approaches
% based on duality and enumeration, we start with these
% We begin by checking to see if the user wants to apply Polyas theorem.
% If that is the case, search for simplex structures, and apply Polyas.
% FIXME: Very slow and experimental
if ~isnan(ops.robust.polya)
[aux,simplex_members] = find_simplex_models(Zmodel);
if length(simplex_members)>0
[F_xw, F_polya] = filter_polya(F_xw,w,ops.robust.polya);
F_robust = F_robust + F_polya;
end
end
% There might still be nonlinearities left in the model. These have to be
% removed. We remove all terms with w-degree larger than 1
[F_xw,F_elimination] = filter_eliminatation(F_xw,w,1);
F_robust = F_robust + F_elimination;
% Equality constraints can not be part of an uncertain problem. Any
% dependence w.r.t w in inequalities has to be removed
F_eq = F_xw(find(is(F_xw,'equality')));
F_xw = F_xw - F_eq;
[F_eq_left,F_eliminate_equality] = filter_eliminatation(F_eq,w,0);
F_robust = F_robust + F_eliminate_equality + F_eq_left;
% The problem should now be linear in the uncertainty, with no uncertain
% equality constraints. Hence, now we apply explicit maximization,
% enumeration or duality-based robustification
% Check if the uncertainty model is a simple box model.
[aux,lower,upper] = find_simple_variable_bounds(Zmodel);
if all(~isinf(lower)) & all(~isinf(upper))
F_lp = F_xw(find(is(F_xw,'elementwise')));
F_xw = F_xw - F_lp;
F_robust = F_robust + filter_boxmodel(F_lp,lower,upper,x,w);
end
% Pick out the uncertain linear equalities and robustify using duality.
% Duality is only option when uncertainty is conic. We use this approach
% otherwise only if user explicitly asks for it
conic = ~isequal(Zmodel.K.s,0) | ~isequal(Zmodel.K.q,0);
if conic | isequal(ops.robust.lplp,'duality')
F_lp = F_xw(find(is(F_xw,'elementwise')));
F_xw = F_xw - F_lp;
F_robust = F_robust + filter_duality(F_lp,Zmodel,x,w);
end
% Robustify remaining uncertain LP/SOCP/SDP constraints and robustify by
% enumeration.
F_conic = F_xw(find(is(F_xw,'sdp') | is(F_xw,'socc') | is(F_xw,'elementwise')));
F_xw = F_xw - F_conic;
F_robust = F_robust + filter_enumeration(F_conic,Zmodel,x,w,ops);
% If there is anything left now, it means that we do not support it (such
% as conic uncertainty in conic constraint)
if length(F_xw) > 0
if any(~islinear(F_xw))
error('There are some uncertain constraints that not are supported by YALMIP')
else
F_robust = F_robust + F_xw;
end
end
% Return the robustfied model
F = F_robust+F_x;
h = h_fixed;
% The model has been expanded, so we have to remember this (trying to
% expand an expanded model leads to nonconvexity error)
F = expanded(F,1); % This is actually done already in expandmodel
h = expanded(h,1); % But this one has to be done manually
function groups = find_groups(model)
X = zeros(size(model.F_struc,2)-1);
top = 1;
if model.K.f + model.K.l > 0
A = model.F_struc(top:model.K.f+model.K.l,2:end);
for i = 1:size(A,1)
X(find(A(i,:)),find(A(i,:))) = 1;
% X(find(A(i,:)),i) = 1;
end
top = top + model.K.f + model.K.l;
end
if any(model.K.q) > 0
for j = 1:length(model.K.q)
A = model.F_struc(top:top+model.K.q(j)-1,2:end);top = top + model.K.q(j);
A = sum(abs(A),1);
for i = 1:size(A,1)
X(find(A),find(A)) = 1;
end
end
end
if any(model.K.s) > 0
for j = 1:length(model.K.s)
A = model.F_struc(top:top+model.K.s(j)^2-1,2:end);top = top + model.K.s(j)^2;
A = sum(abs(A),1);
for i = 1:size(A,1)
X(find(A),find(A)) = 1;
end
end
end
[a,b,c,d] = dmperm(X);
for i = 1:length(d)-1
groups{i} = sort(a(d(i):d(i+1)-1));
end
function Zmodel = convertuncertainty(Zmodel);
% Temoporary hack, will be generalized once the framework for multiple
% uncertainty models is supported
% We are looking for k>t, -tw<t
if size(Zmodel,1) == 1+(size(Zmodel,2)-1)*2 & Zmodel.K.f==0 & Zmodel.K.l==size(Zmodel.F_struc,1)
n = size(Zmodel.F_struc,2)-1;
if isequal(Zmodel.F_struc(:,2:end),sparse([zeros(1,n-1) -1;[eye(n-1);-eye(n-1)] ones(2*(n-1),1)]))
Zmodel.F_struc = [ones(2*n,1)*Zmodel.F_struc(1,1) [eye(n);-eye(n)]];
Zmodel.K.l = 2*n;
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -