📄 feascpx.m
字号:
% FEASCPX Generates a random sparse optimization problem with
% linear, quadratic and semi-definite constraints. Output
% can be used by SEDUMI. Includes complex-valued data.
%
% The following two lines are typical:
% > [AT,B,C,K] = FEASCPX;
% > [X,Y,INFO] = SEDUMI(AT,B,C,K);
%
% An extended version is:
% > [AT,B,C,K] = FEASCPX(m,lpN,lorL,rconeL,sdpL,denfac)
%
% SEE ALSO sedumi AND feasreal.
function [At,b,c,K] = feascpx(m,nLP,qL,rL,nL,denfac)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA%
if nargin < 6
denfac = 0.1;
if nargin < 5
nL = 1+ round(7*rand(1,5));
fprintf('Choosing random SDP-product cone K.s.\n')
if nargin < 4
rL = 3 + round(4*rand(1,5));
fprintf('Choosing random LORENTZ R-product cone K.r.\n')
if nargin < 3
qL = 3 + round(4*rand(1,5));
fprintf('Choosing random LORENTZ-product cone K.q.\n')
if(nargin < 2)
nLP = 10;
fprintf('Choosing default K.l=%3.0f.\n',nLP)
if nargin < 1
m=10;
fprintf('Choosing default m=%3.0f.\n',m)
end
end
end
end
end
end
if isempty(nLP)
nLP = 0;
end
nblk = length(nL) + length(rL) + length(qL) + nLP;
denfac = min(1, max(denfac,2/nblk));
fprintf('Choosing block density denfac=%6.4f per row\n',denfac)
Apattern=sparse(m,nblk);
for j=1:m
pati = sprandn(1,nblk,denfac);
Apattern(j,:) = (pati~= 0);
end
sumnLsqr = sum(nL.^2);
x = zeros(nLP+sum(qL)+sum(rL)+sumnLsqr,1);
x(1:nLP) = rand(nLP,1);
At = sparse(length(x),m);
At(1:nLP,:) = sprandn(Apattern(:,1:nLP)');
firstk = nLP+1;
%[nA, mA] = size(At);
% LORENTZ:
for k=1:length(qL)
nk = qL(k); lastk = firstk + nk - 1;
x(firstk) = rand;
for j=1:m
if Apattern(j,nLP+k)==1
At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)) + sqrt(-1) * ...
sparse([0;sprand(nk-1,1,1/sqrt(nk))]);
end
end
firstk = lastk + 1;
end
% RCONE (Rotated Lorentz):
for k=1:length(rL)
nk = rL(k); lastk = firstk + nk - 1;
x(firstk) = rand; x(firstk+1) = rand;
for j=1:m
if Apattern(j,nLP+length(qL)+k)==1
At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)) + sqrt(-1) * ...
sparse([0;0;sprand(nk-2,1,1/sqrt(nk-1))]);
end
end
firstk = lastk + 1;
end
% SDP:
for k=1:length(nL)
nk = nL(k); lastk = firstk + nk*nk - 1;
Xk = diag(rand(nk,1)); % diagonal, to keep sparsity structure
x(firstk:lastk) = Xk; %although symmetric, store nk^2 elts.
for j=1:m
if Apattern(j,nLP+length(qL)+length(rL)+k)==1
rAik = sprandsym(nk,1/nk); %on average 1 nonzero per row
iAik = sprand(nk,nk,1/nk); %on average 1 nonzero per row
At(firstk:lastk,j) = vec(rAik + sqrt(-1)*(iAik-iAik'));
end
end
firstk = lastk + 1;
end
b = real(full(At'*x));
y = rand(m,1)-0.5;
c = sparse(At*y)+x;
K.l = nLP; K.q = qL; K.r = rL; K.s = nL;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -