📄 iswnbr.m
字号:
% [delta,h,alpha] = iswnbr(vSQR,thetaSQR)
% ISWNBR Checks feasibility w.r.t. wide region/neighborhood of Sturm-Zhang.
% vTAR:= (1-alpha)*max(h,v) projection v onto theta-central region
% delta = (sqrt(n)/theta) * norm(vTAR - v) / norm(v)
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function [delta,h,alpha] = iswnbr(w,thetaSQR)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ')
% ----------------------------------------
% r = n/thetaSQR
% hSQR = sumwNT/(r-|T|), hubSQR = sumwNT/(r-|T| - |Q|)
% sumdifv = h*|T| - sumvT (sumvT = sum(v_T), growing )
% sumdifw = hSQR*|T| - sumwT
% alpha = sumdifv / (r*h)
% deltaSQR = r * ( 2*alpha-alpha^2 - (1-alpha)^2 * sumdifw/gap )
% WE UPDATE sumdifv AND sumdifw IN A STABLE WAY
% ----------------------------------------
n = length(w); gap = sum(w);
sumwNT = gap;
r = n / thetaSQR;
cardT = 0; wQ = []; sumdifv = 0; sumdifw = 0;
cardQ = n;
hSQR = sumwNT / (r - cardT); hubSQR = sumwNT / (r-(n-1));
for j = 1:n
wj = w(j);
if wj >= hubSQR % wj >= hubSQR ==> not in T
cardQ = cardQ - 1;
hubSQR = sumwNT / (r-cardT-cardQ);
elseif wj < hSQR % wj < hSQR ==> in T
cardT = cardT + 1;
cardQ = cardQ - 1;
hubSQR = (1-wj/sumwNT) * hubSQR;
sumwNT = sumwNT - wj;
oldhSQR = hSQR;
hSQR = sumwNT / (r - cardT);
sumdifw = sumdifw + (oldhSQR-wj) + cardT * (hSQR-oldhSQR);
sumdifv = sumdifv + (sqrt(oldhSQR)-sqrt(wj)) + ...
cardT * (sqrt(hSQR)-sqrt(oldhSQR));
else % Inconclusive: j in Q
wQ = [wQ;wj];
end % if
end % for
% ----------------------------------------
% The same treatment for the Q set, but we
% sort the (presumably short) wQ first.
% ----------------------------------------
if ~isempty(wQ)
sort(wQ);
STOP = 0; j = 1;
while ~STOP
wj = wQ(j);
if wj >= hSQR
STOP = 1;
else
cardT = cardT + 1;
sumwNT = sumwNT - wj;
oldhSQR = hSQR;
hSQR = sumwNT / (r - cardT);
sumdifw = sumdifw + (oldhSQR-wj) + cardT * (hSQR-oldhSQR);
sumdifv = sumdifv + (sqrt(oldhSQR)-sqrt(wj)) + ...
cardT * (sqrt(hSQR)-sqrt(oldhSQR));
j = j+1;
if j > length(wQ)
STOP = 1;
end
end
end
end % treatment Q
% ----------------------------------------
% alpha = sumdifv/(r*h)
% deltaSQR = r * ( 2*alpha-alpha^2 - (1-alpha)^2 * sumdifw/gap )
% (THE ABOVE DIFFERENCE SHOULD NOT BE NUMERICALLY DANGEROUS,
% SINCE alpha IS *SIGNIF* BIGGER THAN sumdifw/gap )
% ----------------------------------------
h = sqrt(hSQR);
alpha = sumdifv/ (r*h);
deltaSQR = alpha*(2-alpha) - (1-alpha)^2 * sumdifw/gap;
delta = sqrt(r*deltaSQR);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -