📄 sdmauxscalarmul.c
字号:
/* ************************************************************
MODULE sdmaux*.c -- Several low-level subroutines for the
mex-files in the Self-Dual-Minimization package.
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
************************************************************ */
#include "blksdp.h"
/* ************************************************************
TIME-CRITICAL PROCEDURE -- scalarmul
Computes r = alpha * x using loop-unrolling.
************************************************************ */
void scalarmul(double *r, const double alpha,const double *x,const int n)
{
int k;
for(k = 0; k < n-15; ){ /* LEVEL 16 */
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
}
/* ------------------------------------------------------------
Now, i in {n-15, n-14, ..., n}. Do the last n-i elements.
------------------------------------------------------------ */
if(k < n-7){ /* LEVEL 8 */
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
}
if(k < n-3){ /* LEVEL 4 */
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
}
if(k < n-1){ /* LEVEL 2 */
r[k] = alpha * x[k]; k++;
r[k] = alpha * x[k]; k++;
}
if(k < n) /* LEVEL 1 */
r[k] = alpha * x[k];
}
/* ************************************************************
TIME-CRITICAL PROCEDURE -- addscalarmul
Computes r += alpha * x using loop-unrolling.
************************************************************ */
void addscalarmul(double *r, const double alpha,const double *x,const int n)
{
int k;
for(k = 0; k < n-7; ){ /* LEVEL 8 */
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
}
/* ------------------------------------------------------------
Now, i in {n-7, n-6, ..., n}. Do the last n-i elements.
------------------------------------------------------------ */
if(k < n-3){ /* LEVEL 4 */
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
}
if(k < n-1){ /* LEVEL 2 */
r[k] += alpha * x[k]; k++;
r[k] += alpha * x[k]; k++;
}
if(k < n) /* LEVEL 1 */
r[k] += alpha * x[k];
}
/* ************************************************************
TIME-CRITICAL PROCEDURE -- subscalarmul(x,alpha,y,n)
Computes x -= alpha * y using LEVEL 8 loop-unrolling.
************************************************************ */
void subscalarmul(double *x, const double alpha, const double *y, const int n)
{
int i;
for(i=0; i< n-7; ){ /* LEVEL 8 */
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
}
/* ------------------------------------------------------------
Now, i in {n-7, n-6, ..., n}. Do the last n-i elements.
------------------------------------------------------------ */
if(i < n-3){ /* LEVEL 4 */
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
}
if(i < n-1){ /* LEVEL 2 */
x[i] -= alpha * y[i]; i++;
x[i] -= alpha * y[i]; i++;
}
if(i < n) /* LEVEL 1 */
x[i] -= alpha * y[i];
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -