⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sdmauxscalarmul.c

📁 matlab中uwb波形优化算法经常会使用的工具包:SeDuMi_1_1R3.
💻 C
字号:
/* ************************************************************
   MODULE sdmaux*.c  -- Several low-level subroutines for the
   mex-files in the Self-Dual-Minimization package.

% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA  (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
%   Dept. Econometrics & O.R., Tilburg University, the Netherlands.
%   Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
%   Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
%   CRL, McMaster University, Canada.
%   Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA

 ************************************************************ */

#include "blksdp.h"
/* ************************************************************
   TIME-CRITICAL PROCEDURE -- scalarmul
   Computes  r = alpha * x  using loop-unrolling.
   ************************************************************ */
void scalarmul(double *r, const double alpha,const double *x,const int n)
{
  int k;

  for(k = 0; k < n-15; ){                 /* LEVEL 16 */
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
  }
/* ------------------------------------------------------------
   Now, i in {n-15, n-14, ..., n}. Do the last n-i elements.
   ------------------------------------------------------------ */
  if(k < n-7){                              /* LEVEL 8 */
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
  }
  if(k < n-3){                              /* LEVEL 4 */
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
  }
  if(k < n-1){                              /* LEVEL 2 */
    r[k] = alpha * x[k]; k++;
    r[k] = alpha * x[k]; k++;
  }
  if(k < n)                                 /* LEVEL 1 */
    r[k] = alpha * x[k];
}

/* ************************************************************
   TIME-CRITICAL PROCEDURE -- addscalarmul
   Computes  r += alpha * x  using loop-unrolling.
   ************************************************************ */
void addscalarmul(double *r, const double alpha,const double *x,const int n)
{
  int k;

  for(k = 0; k < n-7; ){                 /* LEVEL 8 */
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
  }
/* ------------------------------------------------------------
   Now, i in {n-7, n-6, ..., n}. Do the last n-i elements.
   ------------------------------------------------------------ */
  if(k < n-3){                              /* LEVEL 4 */
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
  }
  if(k < n-1){                              /* LEVEL 2 */
    r[k] += alpha * x[k]; k++;
    r[k] += alpha * x[k]; k++;
  }
  if(k < n)                                 /* LEVEL 1 */
    r[k] += alpha * x[k];
}

/* ************************************************************
   TIME-CRITICAL PROCEDURE -- subscalarmul(x,alpha,y,n)
   Computes x -= alpha * y using LEVEL 8 loop-unrolling.
   ************************************************************ */
void subscalarmul(double *x, const double alpha, const double *y, const int n)
{
  int i;
  
  for(i=0; i< n-7; ){          /* LEVEL 8 */
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
  }
/* ------------------------------------------------------------
   Now, i in {n-7, n-6, ..., n}. Do the last n-i elements.
   ------------------------------------------------------------ */
  if(i < n-3){                           /* LEVEL 4 */
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
  }
  if(i < n-1){                           /* LEVEL 2 */
    x[i] -= alpha * y[i]; i++;
    x[i] -= alpha * y[i]; i++;
  }
  if(i < n)                              /* LEVEL 1 */
    x[i] -= alpha * y[i];
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -