📄 symbfwblk.c
字号:
/*
x = symbfwblk(L, b)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include <string.h>
#include "mex.h"
#include "blksdp.h"
#define X_OUT plhs[0]
#define NPAROUT 1
#define L_IN prhs[0]
#define B_IN prhs[1]
#define NPARIN 2
/* ************************************************************
PROCEDURE snodeCompress - Compressed subscripts based on
supernodal partition.
INPUT
ljc, lir - uncompressed nz-structure of L
xsuper - supernodal partition (length nsuper+1).
nsuper - number of supernodes
OUTPUT
xlindx - length nsuper+1, the columns in lindx.
lindx - compressed subscript array: L(:,xsuper). Should be allocated
to ljc[m], so that there are certainly enough entries.
snode - length m = xsuper[nsuper+1]. Maps subnode to its supernode.
************************************************************ */
void snodeCompress(int *xlindx,int *lindx,int *snode,
const int *ljc,const int *lir,const int *xsuper,
const int nsuper)
{
int j, jsup, ix, collen, jcol;
/* ------------------------------------------------------------
SNODE: map each column to the supernode containing it
------------------------------------------------------------ */
j = xsuper[0];
for(jsup = 0; jsup < nsuper; jsup++){
while(j < xsuper[jsup + 1])
snode[j++] = jsup;
}
/* ------------------------------------------------------------
COMPRESS SUBSCRIPTS:
Let (xlindx,lindx) = ljc(xsuper(:)), i.e store only once
for each snode, instead of once per column.
------------------------------------------------------------ */
for(ix = 0, jsup = 0; jsup < nsuper; jsup++){
xlindx[jsup] = ix;
jcol = xsuper[jsup];
collen = ljc[jcol+1] - ljc[jcol];
memcpy(lindx + ix, lir + ljc[jcol], collen * sizeof(int));
ix += collen;
}
xlindx[nsuper] = ix;
}
/* ************************************************************
PROCEDURE getnzfwlj - find nonzero supernodes in L\e_{xsuper[jsup]}.
INPUT
jsup - starting supernode to process from.
snode, xsuper - supernodal partition.
xsuper(nsuper+1): xsuper(j):xsuper(j+1)-1 is jth supernode
snode(m): j=snode(i) means xsuper(j) <= i < xsuper(j+1).
xlindx,lindx - compressed subscript array.
xlindx(nsuper+1): lindx(xlindx(j):xlindx(j+1)-1) are the subscripts
for supernode j.
UPDATED
processed - Sets processed[jsup] = 1 if jsup is in L\e_{xsuper[jsup]}.
snodefrom - Lists first relevant subnode of each supernode
where processed[jsup]=1.
REMARK - caller has to set processed[jsup]=1; getnzfwlj only does
this for the child supernodes.
************************************************************ */
void getnzfwlj(int *snodefrom, char *processed, int jsup,
const int *snode, const int *xsuper,
const int *xlindx, const int *lindx)
{
int i,j;
j = xsuper[jsup+1] - xsuper[jsup];
while(xlindx[jsup] + j < xlindx[jsup + 1]){
i = lindx[xlindx[jsup] + j];
jsup = snode[i]; /* next affected snode */
/* ------------------------------------------------------------
If jsup has already been processed, then we can stop here, after
making sure that i >= snodefrom[jsup].
------------------------------------------------------------ */
if(processed[jsup]){
if(i < snodefrom[jsup])
snodefrom[jsup] = i;
break; /* STOP */
}
/* ------------------------------------------------------------
Otherwise, we process and link through to next affected supernode
------------------------------------------------------------ */
processed[jsup] = 1;
snodefrom[jsup] = i;
j = xsuper[jsup+1] - xsuper[jsup];
}
}
/* ************************************************************
PROCEDURE getnzsuper - Compute sparsity structure of L\b(perm), by
determining nonzero-supernodes, and starting subnodes within
them (each supernode is a dense diag block in L).
INPUT
bir, bnnz - bir(bnnz) lists the row-indices of vector b.
invperm - int(m) Is s.t. perm[invperm[i]] = i.
snode, xsuper - supernodal partition.
xsuper(nsuper+1): xsuper(j):xsuper(j+1)-1 is jth supernode
snode(m): j=snode(i) means xsuper(j) <= i < xsuper(j+1).
xlindx,lindx - compressed subscript array.
xlindx(nsuper+1): lindx(xlindx(j):xlindx(j+1)-1) are the subscripts
for supernode j.
UPDATED
processed - char(nsuper) array. On input all-0, on output
processed[jsup] = 1 iff jsup is in nz structure of L\b.
OUTPUT
snodefrom - Length nsuper array. Lists first relevant subnode of
each supernode where processed[jsup]=1.
************************************************************ */
void getnzsuper(int *snodefrom, char *processed,
const int *bir, const int bnnz,
const int *invperm, const int *snode, const int *xsuper,
const int *xlindx, const int *lindx)
{
int inz,i,jsup;
/* ------------------------------------------------------------
We'll process each supernode jsup = snode[ bir[ inz ] ], to
find all supernodes in x, L*x = b, and the first relevant
subnode of each supernode, snodefrom[jsup].
------------------------------------------------------------ */
if(bnnz <= 0)
return;
for(inz = 0; inz < bnnz; inz++){
i = invperm[bir[inz]]; /* We're interested in b(perm) */
jsup = snode[i];
/* ------------------------------------------------------------
If jsup has not yet been processed, then find supernodes involved
in solving L*x = e_i.
------------------------------------------------------------ */
if(!processed[jsup]){
snodefrom[jsup] = i;
getnzfwlj(snodefrom,processed,jsup, snode,xsuper,xlindx,lindx);
processed[jsup] = 1;
}
/* ------------------------------------------------------------
Otherwise, we only need to make sure that i >= snodefrom[jsup].
------------------------------------------------------------ */
else if(i < snodefrom[jsup])
snodefrom[jsup] = i;
}
}
/* ************************************************************
PROCEDURE symbfwmat - Computes nz-structur of x = L\b(perm,:).
INPUT
bjc, bir - nz-structure of m x n RHS-matrix b.
invperm - int(m) Is s.t. perm[invperm[i]] = i.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -