⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dpr1fact.c

📁 matlab中uwb波形优化算法经常会使用的工具包:SeDuMi_1_1R3.
💻 C
📖 第 1 页 / 共 3 页
字号:
/*
%                               [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
% DPR1FACT  Factor d[iag] p[lus] r[ank] 1:
%    [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
%    Computes fi and d such that
%       diag(d_IN) + x*diag(smult)*x' = 
%(PI_{i=1}^n L(p_OUT^i,beta_i)) * diag(d_OUT) * (PI_{i=1}^n L(p_OUT^i,beta_i))'
%    where L(p,beta) = eye(n) + tril(p*beta',-1).
%    
% Lden.dopiv(k) = 1 if p(:,k) has been reordered, with permutation in
% Lden.pivperm.
% We reorder if otherwise |p(i,k)*beta(j,k)| > maxu.
%
% SEE ALSO fwdpr1,bwdpr1,sedumi
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
function [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)

% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA  (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
%   Dept. Econometrics & O.R., Tilburg University, the Netherlands.
%   Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
%   Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
%   CRL, McMaster University, Canada.
%   Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA

*/

#include <math.h>
#include <string.h>
#include "mex.h"
#include "blksdp.h"

#define LDEN_OUT myplhs[0]
#define D_OUT myplhs[1]
#define NPAROUT 2

#define X_IN prhs[0]
#define D_IN prhs[1]
#define LSYMB_IN prhs[2]
#define SMULT_IN prhs[3]
#define MAXU_IN prhs[4]
#define NPARIN 5

/* ============================================================
   DPR1FACT-subroutines: Compact Cholesky for X = diag(d) + p*p'.
   several versions, to allow sequential or permuted ordering.
   ============================================================ */

/* ************************************************************
   dpr1fact - Compact Cholesky for X = diag(d) + p*p'/t to
       X = L(p,beta) * diag(d_OUT) * L(p,beta)'
       where L(p,beta) = eye(m) + tril(p*beta',-1)
   INPUT:
     n - Order of beta. n = min(m,idep), where idep is the
       1st entry where d(idep) = 0 on input. Caller then needs to finish by
       pivoting on idep by itself.
     mu - mu(m) = 0, mu(i) = max(psqr(i+1:mk)), for i=1:mk-1.
     maxu - Controls stability check: we postpone rows such that
       max(abs(L)) <= maxu.
   UPDATED:
     d    - Length n vector: the diagonal entries. On input, the old ones,
          d(1:n) > 0. On output the updated ones after the factorization.
          Remain positive if t > 0.
     fi   - on input, contains the vector x (=p.^2),
          on output it is such that beta(j) = p(j) / fi(j), for
          j not in ph2psqr.i.
     t - Initial t: set t = 1 for D+p*p', set t = -1 for D-p*p'.
   OUTPUT
     ph2psqr - The postponed rows j, with corresponding psqr(j). Controled
       by maxu.
   REMARK:
     Since L=eye(m)+tril(p*beta'), beta(n-1) and fi(n-1) are useful only
     if m > n: it'll be used in rows n:m-1.
   RETURNS: nph2, number of postponed nodes = length(ph2psqr).
   ************************************************************ */
int dpr1fact(double *fi, double *d, keydouble *ph2psqr, double *pt, const int n,
             const double *mu, const double maxu)
{
  int nph2;
  double dj,fij, muph2, t;
  keydouble p2j;

/* ------------------------------------------------------------
   fi(j) = x(j) + t*d(j),  d_new(j) = fi(j)/t,  tnew = fi(j)/d_old(j)
   Store j in p2j.k
   ------------------------------------------------------------ */ 
  t = *pt;
  nph2 = 0;
  muph2 = 0.0;                 /* muph2 = max(psqr(postponed_nodes)) */
  for(p2j.k = 0; p2j.k < n; p2j.k++){
/* ------------------------------------------------------------
   Step j: remains to factor diag(d(j:end)) + p(j:end)*p(j:end)'/t.
   The pivot is d(j) + p(j)^2/t = (t*d(j)+x(j))/t.
   ------------------------------------------------------------ */
    dj = d[p2j.k];
    p2j.r = fi[p2j.k];                    /* p2j = {j, p_j^2} */
    fij = p2j.r + t*dj;                  /* fi(j) = p_j^2 + t*d_j */
/* ------------------------------------------------------------
   max SQR of below-diag = [pj^2 * max(p(j+1:end).^2)] / t^2
   This should not exceed maxu^2 * pivot^2.
   ------------------------------------------------------------ */
    if(p2j.r * MAX(muph2, mu[p2j.k]) <= SQR(maxu * fij)){
      fi[p2j.k] = fij;                 /* pivot j is stable */
      d[p2j.k]  = fij / t;             /* d(j;NEW) = d_j + (p_j^2 / t). */
      t         = fij / dj;            /* Compute new t for next iter. */
    }
    else{
      ph2psqr[nph2++] = p2j;            /* Postpone to phase 2 */
      muph2 = MAX(muph2, p2j.r);        /* max(ph2psqr.r) */
    }
  }
  *pt = t;
  return nph2;
}


/* ************************************************************
   dpr1factperm - Compact Cholesky for X = diag(d) + p*p' to
       X = L(p,beta) * diag(d_OUT) * L(p,beta)'
       where L(p,beta) = eye(m) + tril(p*beta',-1).
       Follows the sequence given in "perm"; realligns accepted pivots
       from start of "perm", stores rejected ones in ph2psqr.
   INPUT:
     n - Order of beta.  n = min(m,idep), where idep is the
       1st entry where d(idep) = 0 on input. Caller then needs to finish by
       pivoting on idep by itself.
     t - Initial t: set t = 1 for D+p*p', set t = -1 for D-p*p'.
     maxu - Controls stability check: we postpone rows such that
       max(abs(L)) <= maxu.
     mu - max(psqr(perm[i+1:m-1])) for all i=1:n (n <= m). NB: in perm-order.
   UPDATED:
     perm - pivot sequence. Evaluate pivots perm(0:n-1). On output,
       perm(0:n-nph2-1) are the accepted pivots. 
     d    - Length n vector: the diagonal entries. On input, the old ones,
          d(1:n) > 0. On output the updated ones after the factorization.
          Remain positive if t > 0.
     fi   - on input, contains the vector x (=p.^2),
          on output s.t. beta(j) = p(j) / fi(j) for j=perm[0:n-nph2-1].
   OUTPUT
     ph2psqr - The postponed rows j, with corresponding psqr(j). Controled
       by maxu.
   REMARK:
     Since L=eye(m)+tril(p*beta'), beta(n-1) and fi(n-1) are useful only
     if m > n: it'll be used in rows n:m-1.
   RETURNS: nph2, number of postponed nodes = length(ph2psqr).
   ************************************************************ */
int dpr1factperm(double *fi, double *d, keydouble *ph2psqr, double *pt,
                 int *perm, const int n, const double *mu, const double maxu)
{
  int i, jnz, nph2;
  double dj,fij, muph2, t;
  keydouble p2j;

/* ------------------------------------------------------------
   fi(j) = x(j) + t*d(j),  d_new(j) = fi(j)/t,  tnew = fi(j)/d_old(j)
   Store j in p2j.k
   ------------------------------------------------------------ */ 
  t = *pt;
  nph2 = 0;
  muph2 = 0.0;
  jnz = 0;         /* index into perm_OUT, for accepted pivots */
  for(i = 0; i < n; i++){
    p2j.k = perm[i];
    dj = d[p2j.k];
    p2j.r = fi[p2j.k];                    /* p2j = {j, p_j^2} */
    fij = p2j.r + t*dj;                  /* fi(j) = p_j^2 + t*d_j */
    if(p2j.r * MAX(muph2, mu[i]) <= SQR(maxu * fij)){
      fi[p2j.k] = fij;                   /* pivot j is stable */
      perm[jnz++] = p2j.k;
      d[p2j.k]  = fij / t;             /* d(j;NEW) = d_j + (p_j^2 / t). */
      t         = fij / dj;            /* Compute new t for next iter. */
    }
    else{
      ph2psqr[nph2++] = p2j;            /* Postpone to phase 2 */
      muph2 = MAX(muph2, p2j.r);        /* max(ph2psqr.r) */
    }
  }
  mxAssert(jnz + nph2 == n, "");
  *pt = t;
  return nph2;
}

/* ************************************************************
   ph2dpr1fact - Compact Cholesky for X = diag(d) + p*p' to
       X = L(p,beta) * diag(d_OUT) * L(p,beta)'
       where L(p,beta) = eye(m) + tril(p*beta',-1)
   INPUT:
     n - Order of psqr (number of phase-2 rows).
     t - Initial t: output from 1st phase; is mon. incr.
       t >= 1 for D+p*p', whereas -1 <= t < 0 for D-p*p'.
   UPDATED:
     psqr - Contains the sparse vector (p.^2), where the row-indices
          are the postponed row numbers. On output, the r-values are
          replaced by fi (so that beta = p ./ fi).
     d    - the diagonal entries. On input, the old ones,
          on output the updated ones after the factorization.
          Only those with psqr.i-indices are changed (should be
          all positive already on input).
   REMARK:
     Since L=eye(m)+tril(p*beta'), beta(n-1) and fi(n-1) are useful only
     if m > n: it'll be used in rows n:m-1.
   ************************************************************ */
void ph2dpr1fact(keydouble *psqr, double *d, double *pt, const int n)
{
  int j, jnz;
  double dj,fij,t;
  t = *pt;
/* ------------------------------------------------------------
   fi(j) = x(j) + t*d(j),  d_new(j) = fi(j)/t,  tnew = fi(j)/d_old(j)
   ------------------------------------------------------------ */ 
  for(jnz = 0; jnz < n; jnz++){
    j = (psqr+jnz)->k;
    dj = d[j];
    fij = ((psqr+jnz)->r += t*dj);        /* fi(j) = p_j^2 + t*d_j */
    d[j]    = fij / t;             /* d(j;NEW) = d_j + (p_j^2 / t). */
    t       = fij / dj;            /* Compute new t for next iter. */
  }
  *pt = t;
}

/* ============================================================
   MAIN routine for Compact Cholesky for X = diag(d) + p*p'.
   redirects to the dpr1fact subroutines.
   ============================================================ */

/* ************************************************************
   PROCEDURE dodpr1fact - Factors diag +/- rank-1:
     (D+t*p*p')(perm) = L * diag(d_NEW(perm)) * L',
     L = I+tril(p(perm)*beta',-1).
   INPUT
     p    - length m. We've to factor diag(d)+ (1/t) * p*p'.
     t    - scalar: 1 for adding p*p', -1 for subtracting p*p'.
     maxu - scalar >= 1: The factor L(p,beta) = I+tril(p(perm)*beta',-1)
       will be such that max(abs(L)) <= maxu by choosing perm-ordering.
     m    - length(p).
   UPDATED
     d    - length m. The diagonal. This factors
       diag(d_OLD)+t*p*p' = L(p,beta) * diag(d_NEW) * L(p,beta)'
   OUTPUT
     beta - Length <= m (actual length returned in *pm).
     perm - Length m. Only written if RETURN=1, which means that the
       original ordering was not maxu-stable. Pivot ordering on p,d.
     pn   -  *pn = length(beta) <= m; n<m only if there are dependent rows.
     dep  - Length ndep+1. Lists rows i where d(i) == 0. Indices are
       ascending, and dep[ndep] >= m is tail of this list. On output,
       one entry may be removed, and stored in dep[ndep_OLD].
     *pndep - Cardinality of dep. May be decremented on output, if a
       dependency could be removed, i.e. if t > 0 and p(dep) != 0.
   WORK
     psqr - length m float working array, for p.^2 and later "fi".
     kdwork - length m working array for storing postponed
       rows (rowno and psqr(rowno)), which have to be sorted.
   RETURNS 1 if reordered rows into perm; 0 means that we used
     the sequential 0:m-1 ordering.
   CAUTION: If t < 0, one dependency may be added by the
       rank-1 subtraction. The caller should therefore call findnewdep
       afterwards (for t < 0).
   ************************************************************ */
char dodpr1fact(double *beta, int *perm, double *d, double t, const double *p,
                const int m, int *pn, int *dep, int *pndep,
                const double maxu, double *psqr, keydouble *kdwork)
{

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -