⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 xor_using_neuralnet_rprop.java

📁 一个纯java写的神经网络源代码
💻 JAVA
字号:
/*--- formatted by Jindent 2.1, (www.c-lab.de/~jindent) ---*//* * JOONE - Java Object Oriented Neural Engine * http://joone.sourceforge.net * * XORMemory.java * */package org.joone.samples.engine.xor;import org.joone.engine.*;import org.joone.engine.learning.*;import org.joone.io.*;import org.joone.net.*;import java.util.Vector;/** * Sample class to demostrate the use of the MemoryInputSynapse * * @author Jos�?Rodriguez */public class XOR_using_NeuralNet_RPROP implements NeuralNetListener {    private NeuralNet			nnet = null;    private MemoryInputSynapse  inputSynapse, desiredOutputSynapse;    private MemoryOutputSynapse outputSynapse;        // XOR input    private double[][]			inputArray = new double[][] {        {0.0, 0.0},        {0.0, 1.0},        {1.0, 0.0},        {1.0, 1.0}    };        // XOR desired output    private double[][]			desiredOutputArray = new double[][] {        {0.0},        {1.0},        {1.0},        {0.0}    };        /**     * @param args the command line arguments     */    public static void main(String args[]) {        XOR_using_NeuralNet_RPROP xor = new XOR_using_NeuralNet_RPROP();                xor.initNeuralNet();        xor.train();    }        /**     * Method declaration     */    public void train() {                // set the inputs        inputSynapse.setInputArray(inputArray);        inputSynapse.setAdvancedColumnSelector("1,2");                // set the desired outputs        desiredOutputSynapse.setInputArray(desiredOutputArray);        desiredOutputSynapse.setAdvancedColumnSelector("1");                // get the monitor object to train or feed forward        Monitor monitor = nnet.getMonitor();                // set the monitor parameters        monitor.setLearningRate(1); // RPROP needs a positive LR, because        // ExtendableLearner multiplies the gradient with the LR before passing        // it to the RpropExtender. RPROP only looks at the sign of the gradient        // so as long as the lR is positive, RPROP works correctly.                monitor.setTrainingPatterns(inputArray.length);        monitor.setTotCicles(500);        // RPROP parameters        monitor.addLearner(0, "org.joone.engine.RpropLearner");        monitor.setBatchSize(monitor.getTrainingPatterns());        monitor.setLearningMode(0);                monitor.setLearning(true);        nnet.addNeuralNetListener(this);        nnet.go();    }        /**     * Method declaration     */    protected void initNeuralNet() {                // First create the three layers        LinearLayer	input = new LinearLayer();        SigmoidLayer	hidden = new SigmoidLayer();        SigmoidLayer	output = new SigmoidLayer();                // set the dimensions of the layers        input.setRows(2);        hidden.setRows(3);        output.setRows(1);                // Now create the two Synapses        FullSynapse synapse_IH = new FullSynapse();	/* input -> hidden conn. */        FullSynapse synapse_HO = new FullSynapse();	/* hidden -> output conn. */                // Connect the input layer whit the hidden layer        input.addOutputSynapse(synapse_IH);        hidden.addInputSynapse(synapse_IH);                // Connect the hidden layer whit the output layer        hidden.addOutputSynapse(synapse_HO);        output.addInputSynapse(synapse_HO);                // the input to the neural net        inputSynapse = new MemoryInputSynapse();                input.addInputSynapse(inputSynapse);                // the output of the neural net        outputSynapse = new MemoryOutputSynapse();                output.addOutputSynapse(outputSynapse);                // The Trainer and its desired output        desiredOutputSynapse = new MemoryInputSynapse();                TeachingSynapse trainer = new TeachingSynapse();                trainer.setDesired(desiredOutputSynapse);                // Now we add this structure to a NeuralNet object        nnet = new NeuralNet();                nnet.addLayer(input, NeuralNet.INPUT_LAYER);        nnet.addLayer(hidden, NeuralNet.HIDDEN_LAYER);        nnet.addLayer(output, NeuralNet.OUTPUT_LAYER);        nnet.setTeacher(trainer);        output.addOutputSynapse(trainer);    }        public void cicleTerminated(NeuralNetEvent e) {    }        public void errorChanged(NeuralNetEvent e) {        Monitor mon = (Monitor)e.getSource();        if (mon.getCurrentCicle() % 100 == 0)            System.out.println("Epoch: "+(mon.getTotCicles()-mon.getCurrentCicle())+" RMSE:"+mon.getGlobalError());    }        public void netStarted(NeuralNetEvent e) {    }        public void netStopped(NeuralNetEvent e) {        Monitor mon = (Monitor)e.getSource();        // Read the last pattern and print it out        Vector patts = outputSynapse.getAllPatterns();        Pattern pattern = (Pattern)patts.elementAt(patts.size() - 1);        System.out.println("Output Pattern = " + pattern.getArray()[0] + " Error: " + mon.getGlobalError());    }        public void netStoppedError(NeuralNetEvent e, String error) {    }    }/*--- formatting done in "JMRA based on Sun Java Convention" style on 05-25-2002 ---*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -