📄 xor.java
字号:
/* * XOR.java * Sample class to demostrate the use of the Joone's core engine * see the Developer Guide for more details *//* * JOONE - Java Object Oriented Neural Engine * http://joone.sourceforge.net */package org.joone.samples.engine.xor;import java.io.File;import org.joone.engine.*;import org.joone.engine.learning.*;import org.joone.io.*;import org.joone.net.NeuralNet;public class XOR implements NeuralNetListener { private static String inputData = "org/joone/samples/engine/xor/xor.txt"; private static String outputFile = "/tmp/xorout.txt"; /** Creates new XOR */ public XOR() { } /** * @param args the command line arguments */ public static void main(String args[]) { XOR xor = new XOR(); xor.Go(inputData, outputFile); } public void Go(String inputFile, String outputFile) { /* * Firts, creates the three Layers */ LinearLayer input = new LinearLayer(); SigmoidLayer hidden = new SigmoidLayer(); SigmoidLayer output = new SigmoidLayer(); input.setLayerName("input"); hidden.setLayerName("hidden"); output.setLayerName("output"); /* sets their dimensions */ input.setRows(2); hidden.setRows(3); output.setRows(1); /* * Now create the two Synapses */ FullSynapse synapse_IH = new FullSynapse(); /* input -> hidden conn. */ FullSynapse synapse_HO = new FullSynapse(); /* hidden -> output conn. */ synapse_IH.setName("IH"); synapse_HO.setName("HO"); /* * Connect the input layer whit the hidden layer */ input.addOutputSynapse(synapse_IH); hidden.addInputSynapse(synapse_IH); /* * Connect the hidden layer whit the output layer */ hidden.addOutputSynapse(synapse_HO); output.addInputSynapse(synapse_HO); FileInputSynapse inputStream = new FileInputSynapse(); /* The first two columns contain the input values */ inputStream.setAdvancedColumnSelector("1,2"); /* This is the file that contains the input data */ inputStream.setInputFile(new File(inputFile)); input.addInputSynapse(inputStream); TeachingSynapse trainer = new TeachingSynapse(); /* Setting of the file containing the desired responses, provided by a FileInputSynapse */ FileInputSynapse samples = new FileInputSynapse(); samples.setInputFile(new File(inputFile)); /* The output values are on the third column of the file */ samples.setAdvancedColumnSelector("3"); trainer.setDesired(samples); /* Creates the error output file */ FileOutputSynapse error = new FileOutputSynapse(); error.setFileName(outputFile); //error.setBuffered(false); trainer.addResultSynapse(error); /* Connects the Teacher to the last layer of the net */ output.addOutputSynapse(trainer); NeuralNet nnet = new NeuralNet(); nnet.addLayer(input, NeuralNet.INPUT_LAYER); nnet.addLayer(hidden, NeuralNet.HIDDEN_LAYER); nnet.addLayer(output, NeuralNet.OUTPUT_LAYER); nnet.setTeacher(trainer); // Gets the Monitor object and set the learning parameters Monitor monitor = nnet.getMonitor(); monitor.setLearningRate(0.8); monitor.setMomentum(0.3); /* The application registers itself as monitor's listener * so it can receive the notifications of termination from * the net. */ monitor.addNeuralNetListener(this); monitor.setTrainingPatterns(4); /* # of rows (patterns) contained in the input file */ monitor.setTotCicles(2000); /* How many times the net must be trained on the input patterns */ monitor.setLearning(true); /* The net must be trained */ nnet.go(); /* The net starts the training job */ } public void netStopped(NeuralNetEvent e) { System.out.println("Training finished"); } public void cicleTerminated(NeuralNetEvent e) { } public void netStarted(NeuralNetEvent e) { System.out.println("Training..."); } public void errorChanged(NeuralNetEvent e) { Monitor mon = (Monitor)e.getSource(); /* We want print the results every 200 cycles */ if (mon.getCurrentCicle() % 200 == 0) System.out.println(mon.getCurrentCicle() + " epochs remaining - RMSE = " + mon.getGlobalError()); } public void netStoppedError(NeuralNetEvent e,String error) { }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -