⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sem2d_1b.m

📁 spectral element method
💻 M
字号:
% SEM2D	applies the Spectral Element Method% to solve the 2D SH wave equation, % with stress free boundary conditions,% zero initial conditions% and a time dependent force source,% in a structured undeformed grid.%% Version 1b:	domain = rectangular%            	medium = general (heterogeneous)%		no global arrays%% This script is intended for tutorial purposes.%% Jean-Paul Ampuero	jampuero@princeton.edu%%------------------------------------------% STEP 1: MESH GENERATION% The interval [0,LX]*[0,LY] is divided % into NELX*NELY quadrangular elements.% The numbering of elements follows this convention:%%      ... ... ... ... NELX*NELY% ^    ... ... ... ... ...% | NELX+1 ... ... ... 2*NELX% |     1   2  ... ... NELX  % --->%% Actually, in this case the macro-mesh is so simple % that we don't need to build and store its database here.% The SEM mesh (GLL nodes for each element) is built in the next step.LX=10;LY=30;NELX = 10;NELY = 30;dxe = LX/NELX;dye = LY/NELY;NEL = NELX*NELY;%------------------------------------------% STEP 2: INITIALIZATIONP = 8; % polynomial degreeNGLL = P+1; % number of GLL nodes per elementNT = 1200; % number of timesteps% The Gauss-Lobatto-Legendre points and weights% and derivatives of the Lagrange polynomials H_ij = h'_i(xgll(j))% were pre-tabulated for the usual range of NGLL.% The xgll are in [-1,1][xgll,wgll,H] = GetGLL(NGLL);Ht = H';wgll2 = wgll * wgll' ;W     = zeros(NGLL,NGLL,NELX,NELY);	% for internal forcesx     = zeros(NGLL,NGLL,NELX,NELY);	% coordinates of GLL nodesy     = zeros(NGLL,NGLL,NELX,NELY);	M     = zeros(NGLL,NGLL,NELX,NELY);	% global mass matrix, diagonalrho   = zeros(NGLL,NGLL);	% density will not be storedmu    = zeros(NGLL,NGLL);	% shear modulus will not be storedCFL   = 0.6; 			% stability numberdt    = Inf;  			% timestep (set later)% For this simple mesh the global-local coordinate map (x,y)->(xi,eta)% is linear, its jacobian is constantdx_dxi  = 0.5*dxe;dy_deta = 0.5*dye;jac = dx_dxi*dy_deta;coefint1 = jac/dx_dxi^2 ;coefint2 = jac/dy_deta^2 ;% FOR EACH ELEMENT ...for ey=1:NELY, for ex=1:NELX,   e = (ey-1)*NELX+ex; % Coordinates of the computational (GLL) nodes  x(:,:,e) = repmat( dxe*(ex-0.5+0.5*xgll) , 1,NGLL);  y(:,:,e) = repmat( dye*(ey-0.5+0.5*xgll'), NGLL,1); % Physical properties of the medium % can be heterogeneous inside the elements % and/or discontinuous across elements  % example: a low velocity layer  rho(:,:) = 1;  if ex>NELX/2-2 & ex<NELX/2+3    mu(:,:)  = 0.25;  else    mu(:,:)  = 1;  end % The diagonal mass matrix is stored in a local array.  % It will be assembled later % (nodes at the boundary between two elements get  % contributions from both).  M(:,:,e) = M(:,:,e) + wgll2 .*rho *jac; % The stiffness matrix K is not assembled at this point % We only store its local contributions %  WX(:,:,e) = wgll2 .* mu *jac/dx_dxi^2; %  WY(:,:,e) = wgll2 .* mu *jac/dy_deta^2;  W(:,:,e) = wgll2 .* mu; % The timestep dt is set by the stability condition %   dt = CFL*min(dx/vs)  vs = sqrt(mu./rho);   if dxe<dye    vs = max( vs(1:NGLL-1,:), vs(2:NGLL,:) );    dx = repmat( diff(xgll)*0.5*dxe ,1,NGLL);   else    vs = max( vs(:,1:NGLL-1), vs(:,2:NGLL) );    dx = repmat( diff(xgll)'*0.5*dye ,NGLL,1);   end  dtloc = dx./vs;  dt = min( [dt dtloc(1:end)] );endend %... of element loopdt = CFL*dt;%-- Assemble mass matrix% Along XM(1,:,2:NELX,:) = M(1,:,2:NELX,:) + M(NGLL,:,1:NELX-1,:);M(NGLL,:,1:NELX-1,:) = M(1,:,2:NELX,:);% Along YM(:,1,:,2:NELY) = M(:,1,:,2:NELY) + M(:,NGLL,:,1:NELY-1);M(:,NGLL,:,1:NELY-1) = M(:,1,:,2:NELY);%-- Initialize kinematic fields, stored in local arraysd = zeros(NGLL,NGLL,NELX,NELY);v = zeros(NGLL,NGLL,NELX,NELY);a = zeros(NGLL,NGLL,NELX,NELY);time = (1:NT)'*dt;%-- SOURCE TERM: point force, time function = Ricker wavelet% located in element (ex,ey), local node (igll,jgll)% NOTE: in this example sources at element vertex (connectivity = 4)ex = [NELX/2;NELX/2+1;NELX/2;  NELX/2+1] ;ey = [NELY/2;NELY/2;  NELY/2+1;NELY/2+1] ;igll = [NGLL;1   ;NGLL;1];jgll = [NGLL;NGLL;1   ;1];Fig = sub2ind([NGLL NGLL NELX NELY],igll,jgll,ex,ey);Ff0 = 0.3; 	% fundamental frequencyFt0 = 1.5/Ff0; 	% delay% source time function (at mid-steps)Ft = ricker( time-0.5*dt, Ff0,Ft0);%-- initialize data for output seismograms% record at these nodes:ey = repmat( (NELY/2-7:NELY/2+8), 2,1); ey=ey(:);OUTnseis = length(ey);ex = repmat( NELX/2-2, OUTnseis,1);igll = repmat(P/2+1, OUTnseis,1);jgll = repmat([1;P/2+1], OUTnseis/2,1);OUTiglob = sub2ind([NGLL NGLL NELX NELY],igll,jgll,ex,ey);OUTxseis = x(OUTiglob); OUTyseis = y(OUTiglob); OUTv = zeros(OUTnseis,NT);%-- initialize data for output snapshotsOUTdt = 50;OUTit = 0;OUTindx = Init2dSnapshot_b(NGLL);%------------------------------------------% STEP 3: SOLVER  M*a = -K*d +F% Explicit Newmark-alpha scheme with% alpha=1/2, beta=1/2, gamma=1%half_dt = 0.5*dt;for it=1:NT, % prediction of mid-step displacement: % d_mid = d_old + 0.5*dt*v_old  d = d + half_dt*v;  % internal forces at mid-step -K*d(t+1/2)  % stored in array 'a'  for e=1:NEL,    % NOTE: assuming a(:,:,ex,ey) morphs into a(:,:,e)   %gradients wrt local variables (xi,eta)    local = d(:,:,e);    d_xi  = Ht*local;	    d_eta = local*H;   %element contribution to internal forces   %a(:,:,e) = coefint1*H*( W(:,:,e).*d_xi )+ coefint2*( W(:,:,e).*d_eta )*Ht;    wloc = W(:,:,e);    d_xi = wloc.*d_xi;    d_xi = H * d_xi;    d_eta = wloc.*d_eta;    d_eta = d_eta *Ht;    a(:,:,e) = coefint1* d_xi  + coefint2* d_eta ;  end  % assemble forces % Along X  a(1,:,2:NELX,:) = a(1,:,2:NELX,:) + a(NGLL,:,1:NELX-1,:);  a(NGLL,:,1:NELX-1,:) = a(1,:,2:NELX,:); % Along Y  a(:,1,:,2:NELY) = a(:,1,:,2:NELY) + a(:,NGLL,:,1:NELY-1);  a(:,NGLL,:,1:NELY-1) = a(:,1,:,2:NELY); % add external forces % NOTE: in Matlab, a(Fig) = a(Figll,Fjgll,Fex,Fey)  a(Fig) = a(Fig) - Ft(it); % acceleration: a = (-K*d +F)/M  a = - a ./M ; % update % v_new = v_old + dt*a_new; % d_new = d_old + dt*v_old + 0.5*dt^2*a_new %       = d_mid + 0.5*dt*v_new  v = v + dt*a;  d = d + half_dt*v;%------------------------------------------% STEP 4: OUTPUT  OUTv(:,it) = v(OUTiglob);    if mod(it,OUTdt) == 0    OUTit = OUTit+1;    figure(3) % seismograms    PlotSeisTrace(OUTyseis,time,OUTv);    figure(2)    Plot2dSnapshot_b(x,y,v,OUTindx,0.5);    hold on    plot(OUTxseis,OUTyseis,'^',x(Fig),y(Fig),'*')    hold off    drawnow  endend % ... of time loop

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -