📄 sem2d_2.m
字号:
% SEM2D applies the Spectral Element Method% to solve the 2D SH wave equation, % dynamic fault with slip weakening,% paraxial absorbing boundary conditions% and zero initial conditions% in a structured undeformed grid.%% Version 2: domain = rectangular% medium = general (heterogeneous)% boundaries = 1 fault + 3 paraxial%% This script is intended for tutorial purposes.%% Jean-Paul Ampuero jampuero@princeton.edu%%------------------------------------------% STEP 1: SPECTRAL ELEMENT MESH GENERATION%**** Set here the parameters of the square box domain and mesh : ****LX=30;LY=10;NELX = 60;NELY = 20;P = 8; % polynomial degree%********dxe = LX/NELX;dye = LY/NELY;NEL = NELX*NELY;NGLL = P+1; % number of GLL nodes per element[iglob,x,y]=MeshBox(LX,LY,NELX,NELY,NGLL);x = x-LX/2;nglob = length(x);%------------------------------------------% STEP 2: INITIALIZATION[xgll,wgll,H] = GetGLL(NGLL);Ht = H';wgll2 = wgll * wgll' ;W = zeros(NGLL,NGLL,NEL); % for internal forcesM = zeros(nglob,1); % global mass matrix, diagonalrho = zeros(NGLL,NGLL); % density will not be storedmu = zeros(NGLL,NGLL); % shear modulus will not be stored%**** Set here the parameters of the time solver : ****NT = 2800; % number of timestepsCFL = 0.6; % stability number = CFL_1D / sqrt(2)%********dt = Inf; % timestep (set later)% For this simple mesh the global-local coordinate map (x,y)->(xi,eta)% is linear, its jacobian is constantdx_dxi = 0.5*dxe;dy_deta = 0.5*dye;jac = dx_dxi*dy_deta;coefint1 = jac/dx_dxi^2 ;coefint2 = jac/dy_deta^2 ;% FOR EACH ELEMENT ...for ey=1:NELY, for ex=1:NELX, e = (ey-1)*NELX+ex; ig = iglob(:,:,e);%**** Set here the physical properties of the heterogeneous medium : **** % can be heterogeneous inside the elements % and/or discontinuous across elements % example: a low velocity layer rho(:,:) = 1;% if ex>NELX/2-2 & ex<NELX/2+3% mu(:,:) = 0.25;% else mu(:,:) = 1;% end%******** % Diagonal mass matrix M(ig) = M(ig) + wgll2 .*rho *jac; % Local contributions to the stiffness matrix K % WX(:,:,e) = wgll2 .* mu *jac/dx_dxi^2; % WY(:,:,e) = wgll2 .* mu *jac/dy_deta^2; W(:,:,e) = wgll2 .* mu; % The timestep dt is set by the stability condition % dt = CFL*min(dx/vs) vs = sqrt(mu./rho); if dxe<dye vs = max( vs(1:NGLL-1,:), vs(2:NGLL,:) ); dx = repmat( diff(xgll)*0.5*dxe ,1,NGLL); else vs = max( vs(:,1:NGLL-1), vs(:,2:NGLL) ); dx = repmat( diff(xgll)'*0.5*dye ,NGLL,1); end dtloc = dx./vs; dt = min( [dt dtloc(1:end)] );endend %... of element loopdt = CFL*dt;half_dt = 0.5*dt;%-- Initialize kinematic fields, stored in global arraysd = zeros(nglob,1);v = zeros(nglob,1);a = zeros(nglob,1);time = (1:NT)'*dt;%-- Absorbing boundaries (first order): impedance = 1; % = sqrt(rho*mu)% Left [BcLC,iBcL] = BoundaryMatrix(wgll,[NELX NELY],iglob,dy_deta,'L'); BcLC = impedance*BcLC; % The mass matrix needs to be modified at the boundary % for the implicit treatment of the term C*v. % Fortunately C is diagonal. M(iBcL) = M(iBcL) +half_dt*BcLC;% Right [BcRC,iBcR] = BoundaryMatrix(wgll,[NELX NELY],iglob,dy_deta,'R'); BcRC = impedance*BcRC; M(iBcR) = M(iBcR) +half_dt*BcRC;% Top [BcTC,iBcT] = BoundaryMatrix(wgll,[NELX NELY],iglob,dx_dxi,'T'); BcTC = impedance*BcTC; M(iBcT) = M(iBcT) +half_dt*BcTC;%-- DYNAMIC FAULT at bottom boundary[FltB,iFlt] = BoundaryMatrix(wgll,[NELX NELY],iglob,dx_dxi,'B');FltN = length(iFlt);FltZ = M(iFlt)./FltB /dt;FltX = x(iFlt);FltV = zeros(FltN,NT);FltInitStress = repmat(0.55,FltN,1);%FltInitStress( abs(FltX)<=2 ) = 0.601;FltState = zeros(FltN,1);FltFriction.MUs = repmat(0.6,FltN,1);FltFriction.MUd = repmat(0.5,FltN,1);FltFriction.MUs(abs(FltX)>10) = 100; % barrierFltFriction.MUd(abs(FltX)>10) = 100; % barrierFltFriction.Dc = 0.1;FltFriction.W = (FltFriction.MUs-FltFriction.MUd)./FltFriction.Dc;FltStrength = friction(FltState,FltFriction) - FltInitStress; % strength excess%-- initialize data for output seismograms%**** Set here receiver locations : ****OUTxseis = [-5:0.25:5]'; % x coord of receiversOUTnseis = length(OUTxseis); % total number of receiversOUTyseis = repmat(4,OUTnseis,1); % y coord of receivers%********[OUTxseis,OUTyseis,OUTiglob,OUTdseis] = FindNearestNode(OUTxseis,OUTyseis,x,y);OUTv = zeros(OUTnseis,NT);%-- initialize data for output snapshotsOUTdt = 40;OUTit = 0;OUTindx = Init2dSnapshot(iglob);%------------------------------------------% STEP 3: SOLVER M*a = -K*d +F% Explicit Newmark-alpha scheme with% alpha=1/2, beta=1/2, gamma=1%for it=1:NT, % prediction of mid-step displacement: % d_mid = d_old + 0.5*dt*v_old d = d + half_dt*v; % internal forces at mid-step -K*d(t+1/2) % stored in global array 'a' a(:) = 0; for e=1:NEL, %switch to local (element) representation ig = iglob(:,:,e); local = d(ig); %gradients wrt local variables (xi,eta) d_xi = Ht*local; d_eta = local*H; %element contribution to internal forces %local = coefint1*H*( W(:,:,e).*d_xi ) + coefint2*( W(:,:,e).*d_eta )*Ht ; wloc = W(:,:,e); d_xi = wloc.*d_xi; d_xi = H * d_xi; d_eta = wloc.*d_eta; d_eta = d_eta *Ht; local = coefint1* d_xi + coefint2* d_eta ; %assemble into global vector a(ig) = a(ig) -local; end % absorbing boundaries: a(iBcL) = a(iBcL) - BcLC .* v(iBcL); a(iBcR) = a(iBcR) - BcRC .* v(iBcR); a(iBcT) = a(iBcT) - BcTC .* v(iBcT) ; % fault boundary condition: slip weakening FltVFree = v(iFlt) + dt*a(iFlt)./M(iFlt); TauStick = FltZ .*FltVFree; Tau = min(TauStick,FltStrength); a(iFlt) = a(iFlt) - FltB .*Tau; % solve for a_new: a = a ./M ; % update % v_new = v_old + dt*a_new; % d_new = d_old + dt*v_old + 0.5*dt^2*a_new % = d_mid + 0.5*dt*v_new v = v + dt*a; d = d + half_dt*v; FltState = max(2*d(iFlt),FltState); FltStrength = friction(FltState,FltFriction)-FltInitStress;% rupture nucleation through time weakening, like Andrews 76 VNUC = 0.4;% if time(it)<10/VNUC %FltStrength = min( FltStrength,... ix = find(abs(FltX)<=10); FltStrength(ix) = min(FltStrength(ix), ... max(0.5,0.55+(abs(FltX(ix))-VNUC*time(it))*0.05/(1.0*dxe))... - FltInitStress(ix) ) ;% end FltV(:,it) = 2*v(iFlt);%------------------------------------------% STEP 4: OUTPUT OUTv(:,it) = v(OUTiglob); if mod(it,OUTdt) == 0 OUTit = OUTit+1; figure(1) % seismograms PlotSeisTrace(OUTxseis,time,OUTv); figure(2) Plot2dSnapshot(x,y,v,OUTindx,[0 0.1]); hold on plot(OUTxseis,OUTyseis,'^') hold off drawnow endend % ... of time loopfigure(3)sdt=10;sdx=4;surf(time(1:sdt:end),FltX(1:sdx:end),FltV(1:sdx:end,1:sdt:end))xlabel('Time')ylabel('Position along fault')zlabel('Slip rate')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -