⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sem1d_homog.m

📁 spectral element method
💻 M
字号:
% [eigval,err,eigvec,x]=sem1d_homog(nel,ngll,bc,fig)%% Driver for sem1d_modal_analysis.m on a homogeneous 1D medium% Solved on a regular mesh%% INPUT		nel	total number of elements%		ngll	numer of GLL nodes per element%		bc	'N' for Neumann boundary condition%			'D' for Dirichlet%		fig	[0] plots eigenfrequencies%% OUTPUT	eigval	eigenfrequencies, in ascending order%		err	estimated absolute error on eigenvalues%		eigvec	eigenvectors (modes)%		x	physical coordinates of nodes%function [eigval,err,eigvec,x]=sem1d_homog(nel,ngll,bc,fig)if ~exist('fig','var'), fig=0; endxmesh=(0:nel)' /nel;rho.fun=@constant;rho.data=1;mu.fun=@constant;mu.data=1;if bc=='N'  [eigvec,eigval,x,err]=sem1d_modal_analysis(xmesh,rho,mu,ngll,'NN');  k=(0:length(eigval)-1)';else  [eigvec,eigval,x,err]=sem1d_modal_analysis(xmesh,rho,mu,ngll,'DD');  k=(1:length(eigval))';endanaval=pi*k;if fig, plot(k,eigval,'o-',k,anaval,'--'); endeigval= [eigval,anaval];%------function prop=constant(data,e,x)prop=repmat(data,length(x),1);%--------% Personal notes% % for k=3:10,%   [val,vec,x]=sem1d_homog(1,k);%   hold on%   wmax(k)=max(val(:,1));%   dx(k)=x(2);% end% loglog(dx,wmax,'o',[0.03:0.01:0.5],2.33./[0.03:0.01:0.5])%% ... so: wmax = 7/3 * c/dx%         fmax = 7/3 /(2*pi) *c/dx% also dx = 4/(ngll^2-1)% See email to Matt Haney Mon Aug 23 18:41:14 EDT 2004% For stability of a discrete time scheme, we must have:%   dt*wmax < critical_CFL% For non-dissipative Newmark-alpha critical_CFL=2, so:%   dt*c/dx < 2* 3/7%   CFL < 0.8571

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -