📄 sem2d_newmarka1_scec2.m
字号:
% SEM2D applies the Spectral Element Method% to solve the 2D SH wave equation, % dynamic fault with slip weakening,% paraxial absorbing boundary conditions% and zero initial conditions% in a structured undeformed grid.%% Version 2: domain = rectangular% medium = general (heterogeneous)% boundaries = 1 fault + 3 paraxial% time scheme = Newmark as in SPECFEM3D: alpha=1,beta=0,gamma=1/2%% This script is intended for tutorial purposes.%% Jean-Paul Ampuero jampuero@princeton.edu%%------------------------------------------% STEP 1: SPECTRAL ELEMENT MESH GENERATION%**** Set here the parameters of the square box domain and mesh : ****LX=50e3;LY=50e3/3;%NELX = 75; NELY = 25; P = 8; % polynomial degreeNELX = 150; NELY = 50; P = 4; % polynomial degree%********dxe = LX/NELX;dye = LY/NELY;NEL = NELX*NELY;NGLL = P+1; % number of GLL nodes per element[iglob,x,y]=MeshBox(LX,LY,NELX,NELY,NGLL);x = x-LX/2;nglob = length(x);RHO = 2670.;VS = 3464.;%------------------------------------------% STEP 2: INITIALIZATION[xgll,wgll,H] = GetGLL(NGLL);Ht = H';wgll2 = wgll * wgll' ;W = zeros(NGLL,NGLL,NEL); % for internal forcesM = zeros(nglob,1); % global mass matrix, diagonalrho = zeros(NGLL,NGLL); % density will not be storedmu = zeros(NGLL,NGLL); % shear modulus will not be stored%**** Set here the parameters of the time solver : ****NT = 2200; % number of timestepsCFL = 0.6; % stability number = CFL_1D / sqrt(2)%********dt = Inf; % timestep (set later)% For this simple mesh the global-local coordinate map (x,y)->(xi,eta)% is linear, its jacobian is constantdx_dxi = 0.5*dxe;dy_deta = 0.5*dye;jac = dx_dxi*dy_deta;coefint1 = jac/dx_dxi^2 ;coefint2 = jac/dy_deta^2 ;% FOR EACH ELEMENT ...for ey=1:NELY, for ex=1:NELX, e = (ey-1)*NELX+ex; ig = iglob(:,:,e);%**** Set here the physical properties of the heterogeneous medium : **** rho(:,:) = RHO; mu(:,:) = RHO* VS^2;%******** % Diagonal mass matrix M(ig) = M(ig) + wgll2 .*rho *jac; % Local contributions to the stiffness matrix K % WX(:,:,e) = wgll2 .* mu *jac/dx_dxi^2; % WY(:,:,e) = wgll2 .* mu *jac/dy_deta^2; W(:,:,e) = wgll2 .* mu; % The timestep dt is set by the stability condition % dt = CFL*min(dx/vs) vs = sqrt(mu./rho); if dxe<dye vs = max( vs(1:NGLL-1,:), vs(2:NGLL,:) ); dx = repmat( diff(xgll)*0.5*dxe ,1,NGLL); else vs = max( vs(:,1:NGLL-1), vs(:,2:NGLL) ); dx = repmat( diff(xgll)'*0.5*dye ,NGLL,1); end dtloc = dx./vs; dt = min( [dt dtloc(1:end)] );endend %... of element loopdt = CFL*dt;half_dt = 0.5*dt;half_dt_sq = 0.5*dt^2;%-- Initialize kinematic fields, stored in global arraysd = zeros(nglob,1);v = zeros(nglob,1);a = zeros(nglob,1);time = (1:NT)'*dt;%-- Absorbing boundaries (first order): impedance = RHO*VS;% Leftng = NELY*(NGLL-1)+1;BcLeftIglob = zeros(ng,1);BcLeftC = zeros(ng,1);for ey=1:NELY, ip = (NGLL-1)*(ey-1)+[1:NGLL] ; e=(ey-1)*NELX+1; BcLeftIglob(ip) = iglob(1,1:NGLL,e); BcLeftC(ip) = BcLeftC(ip) + dy_deta*wgll*impedance ;end% Rightng = NELY*(NGLL-1)+1;BcRightIglob = zeros(ng,1);BcRightC = zeros(ng,1);for ey=1:NELY, ip = (NGLL-1)*(ey-1)+[1:NGLL] ; e=(ey-1)*NELX+NELX; BcRightIglob(ip) = iglob(NGLL,1:NGLL,e); BcRightC(ip) = BcRightC(ip) + dy_deta*wgll*impedance ;end% Topng = NELX*(NGLL-1)+1;BcTopIglob = zeros(ng,1);BcTopC = zeros(ng,1);for ex=1:NELX, ip = (NGLL-1)*(ex-1)+[1:NGLL] ; e=(NELY-1)*NELX+ex; BcTopIglob(ip) = iglob(1:NGLL,NGLL,e); BcTopC(ip) = BcTopC(ip) + dx_dxi*wgll*impedance ;end% The mass matrix needs to be modified at the boundary% for the IMPLICIT treatment of the term C*v.% Fortunately C is diagonal.M(BcLeftIglob) = M(BcLeftIglob) +half_dt*BcLeftC;M(BcRightIglob) = M(BcRightIglob) +half_dt*BcRightC;M(BcTopIglob) = M(BcTopIglob) +half_dt*BcTopC;%-- DYNAMIC FAULT at bottom boundaryFaultNglob = NELX*(NGLL-1)+1;FaultIglob = zeros(FaultNglob, 1); FaultB = zeros(FaultNglob, 1); for ex=1:NELX, ip = (NGLL-1)*(ex-1)+[1:NGLL]; e = ex; FaultIglob(ip) = iglob(1:NGLL,1,e); FaultB(ip) = FaultB(ip) + dx_dxi*wgll;endFaultZ = M(FaultIglob)./FaultB /half_dt;FaultX = x(FaultIglob);FaultV = zeros(FaultNglob,NT);FaultD = zeros(FaultNglob,NT);% backgroundFaultNormalStress = 120e6;FaultInitStress = repmat(70e6,FaultNglob,1);FaultState = zeros(FaultNglob,1);FaultFriction.MUs = repmat(0.677,FaultNglob,1);FaultFriction.MUd = repmat(0.525,FaultNglob,1);FaultFriction.Dc = 0.4;% barrierisel = find(abs(FaultX)>15e3);FaultFriction.MUs(isel) = 1e4; % barrierFaultFriction.MUd(isel) = 1e4; % barrier% nucleationisel = find(abs(FaultX)<=1.5e3);FaultInitStress(isel) = 81.6e6;FaultFriction.W = (FaultFriction.MUs-FaultFriction.MUd)./FaultFriction.Dc;FaultStrength = friction(FaultState,FaultFriction)*FaultNormalStress ... - FaultInitStress; % strength excess%-- initialize data for output seismograms%**** Set here receiver locations : ****OUTxseis = [-16e3:600:16e3]'; % x coord of receiversOUTnseis = length(OUTxseis); % total number of receiversOUTyseis = repmat(7.5e3,OUTnseis,1); % y coord of receivers%********% receivers are relocated to the nearest node% OUTdseis = distance between requested and relocated receivers[OUTxseis,OUTyseis,OUTiglob,OUTdseis] = FindNearestNode(OUTxseis,OUTyseis,x,y);OUTv = zeros(OUTnseis,NT);%-- initialize data for output snapshotsOUTdt = 50;OUTit = 0;OUTindx = Init2dSnapshot(iglob);%------------------------------------------% STEP 3: SOLVER M*a = -K*d +F% Explicit Newmark scheme with% alpha=1, beta=0, gamma=1/2%for it=1:NT, % update d = d + dt*v + half_dt_sq*a; % prediction v = v + half_dt*a; a(:) = 0; % internal forces -K*d(t+1) % stored in global array 'a' for e=1:NEL, %switch to local (element) representation ig = iglob(:,:,e); local = d(ig); %gradients wrt local variables (xi,eta) d_xi = Ht*local; d_eta = local*H; %element contribution to internal forces %local = coefint1*H*( W(:,:,e).*d_xi ) + coefint2*( W(:,:,e).*d_eta )*Ht ; wloc = W(:,:,e); d_xi = wloc.*d_xi; d_xi = H * d_xi; d_eta = wloc.*d_eta; d_eta = d_eta *Ht; local = coefint1* d_xi + coefint2* d_eta ; %assemble into global vector a(ig) = a(ig) -local; end % absorbing boundaries: a(BcLeftIglob) = a(BcLeftIglob) - BcLeftC .* v(BcLeftIglob); a(BcRightIglob) = a(BcRightIglob) - BcRightC .* v(BcRightIglob); a(BcTopIglob) = a(BcTopIglob) - BcTopC .* v(BcTopIglob) ; % fault boundary condition: slip weakening FaultVFree = v(FaultIglob) + half_dt*a(FaultIglob)./M(FaultIglob); TauStick = FaultZ .*FaultVFree; % TauStick = a(FaultIglob)./FaultB; Tau = min(TauStick,FaultStrength); a(FaultIglob) = a(FaultIglob) - FaultB .*Tau; % second pass in EXPLICIT implementation of absorbing boundary conditions % (does not require modification of M) % BUT DOES NOT WORK !! (nearly as unstable as explicit with single pass)% a(BcLeftIglob) = a(BcLeftIglob) - half_dt*BcLeftC.*a(BcLeftIglob)./M(BcLeftIglob);% a(BcRightIglob) = a(BcRightIglob) - half_dt*BcRightC.*a(BcRightIglob)./M(BcRightIglob);% a(BcTopIglob) = a(BcTopIglob) - half_dt*BcTopC.*a(BcTopIglob)./M(BcTopIglob); % solve for a_new: a = a ./M ; % correction v = v + half_dt*a; FaultState = max(2*d(FaultIglob),FaultState); FaultStrength = friction(FaultState,FaultFriction)*FaultNormalStress ... -FaultInitStress;%% rupture nucleation through time weakening, like Andrews 76% VNUC = 0.4;%% if time(it)<10/VNUC% %FaultStrength = min( FaultStrength,...% ix = find(abs(FaultX)<=10);% FaultStrength(ix) = min(FaultStrength(ix), ...% max(0.5,0.55+(abs(FaultX(ix))-VNUC*time(it))*0.05/(1.0*dxe))...% - FaultInitStress(ix) ) ;%% end FaultV(:,it) = 2*v(FaultIglob); FaultD(:,it) = 2*d(FaultIglob);%------------------------------------------% STEP 4: OUTPUT OUTv(:,it) = v(OUTiglob); if mod(it,OUTdt) == 0 OUTit = OUTit+1; figure(1) % seismograms PlotSeisTrace(OUTxseis,time,OUTv); figure(2) Plot2dSnapshot(x,y,v,OUTindx,[0 2]); hold on plot(OUTxseis,OUTyseis,'^') hold off drawnow endend % ... of time loopfigure(3)sdt=10;sdx=4;surf(time(1:sdt:end),FaultX(1:sdx:end),FaultV(1:sdx:end,1:sdt:end))xlabel('Time')ylabel('Position along fault')zlabel('Slip rate')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -