📄 svc.m
字号:
function [nsv, alpha, b0] = svc(X,Y,ker,C)%SVC Support Vector Classification%% Usage: [nsv alpha bias] = svc(X,Y,ker,C)%% Parameters: X - Training inputs% Y - Training targets% ker - kernel function% C - upper bound (non-separable case)% nsv - number of support vectors% alpha - Lagrange Multipliers% b0 - bias term%% Author: Steve Gunn (srg@ecs.soton.ac.uk) if (nargin <2 | nargin>4) % check correct number of arguments help svc else fprintf('Support Vector Classification\n') fprintf('_____________________________\n') n = size(X,1); if (nargin<4) C=Inf;, end if (nargin<3) ker='linear';, end % tolerance for Support Vector Detection epsilon = svtol(C); % Construct the Kernel matrix fprintf('Constructing ...\n'); H = zeros(n,n); for i=1:n for j=1:n H(i,j) = Y(i)*Y(j)*svkernel(ker,X(i,:),X(j,:)); end end c = -ones(n,1); % Add small amount of zero order regularisation to % avoid problems when Hessian is badly conditioned. H = H+1e-10*eye(size(H)); % Set up the parameters for the Optimisation problem vlb = zeros(n,1); % Set the bounds: alphas >= 0 vub = C*ones(n,1); % alphas <= C x0 = zeros(n,1); % The starting point is [0 0 0 0] neqcstr = nobias(ker); % Set the number of equality constraints (1 or 0) if neqcstr A = Y';, b = 0; % Set the constraint Ax = b else A = [];, b = []; end % Solve the Optimisation Problem fprintf('Optimising ...\n'); st = cputime; [alpha lambda how] = qp(H, c, A, b, vlb, vub, x0, neqcstr); fprintf('Execution time: %4.1f seconds\n',cputime - st); fprintf('Status : %s\n',how); w2 = alpha'*H*alpha; fprintf('|w0|^2 : %f\n',w2); fprintf('Margin : %f\n',2/sqrt(w2)); fprintf('Sum alpha : %f\n',sum(alpha)); % Compute the number of Support Vectors svi = find( alpha > epsilon); nsv = length(svi); fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n); % Implicit bias, b0 b0 = 0; % Explicit bias, b0 if nobias(ker) ~= 0 % find b0 from average of support vectors on margin % SVs on margin have alphas: 0 < alpha < C svii = find( alpha > epsilon & alpha < (C - epsilon)); if length(svii) > 0 b0 = (1/length(svii))*sum(Y(svii) - H(svii,svi)*alpha(svi).*Y(svii)); else fprintf('No support vectors on margin - cannot compute bias.\n'); end end end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -