⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adaptivelobatto.m

📁 迭代自适应Simpson
💻 M
字号:
function [Q fcnEvals iter] = adaptiveLobatto(fcn, a, b, varargin)% adaptiveLobatto - Numerically evaluate integral, adaptive Lobatto quadrature. %% function [Q fcnEvals iter] = adaptiveLobatto(fcn, a, b, varargin)%% (c) Matthias Conrad and Nils Papenberg (2007-08-03)% % Authors:               %   Matthias Conrad (e-mail: conrad@tiaco.de)%   Nils Papenberg  (e-mail: papenber@math.uni-luebeck.de)%% Version:%		Release date: 2008-08-12   Version: 1.2%   MATLAB Version 7.5.0.338 (R2007b)%% Description:%   The adaptive Lobatto algorithm programmed in an iterative not recursive%   manner%% Input arguments:%   fcn             - function to be integrated %   a               - first point of interval%   b               - final point of interval%   #varargin       - further options of algorithm%     tol           - tolerance accuracy of quadrature [ 1e-6 ]%     parts         - initial number of partitions [ 2 ]%     maxFcnEvals   - maximal number of function evaluations allowed [ 20000 ]%     maxParts      - maximal number of partitions allowed [ 8000 ]%% Output arguments:%   Q               - numerical integral of function fcn on [a,b]%   fcnEvals        - number of function evaluations%   iter            - number of iterations%% Details:%   This function behavior is similar to of Matlab integrated function "quadv".%   %   Example:%     Q = adaptiveLobatto(@(x) [-cos(50*x); sin(x)], 0, pi, 'tol', 1e-6)%% References:%   [1] Gander, W. & Gautschi, W. Adaptive Quadrature - Revisited%       Eidgenoessische technische Hochschule Zuerich, 2000.%   [2] Conrad, M. Iterative Adaptive Simpson and Lobatto Quadrature in Matlab,%       Mathematics and Computer Science, Emory University, TR-2008-012, 2008.% check scalar limits of intervalif ~isscalar(a) || ~isscalar(b)  error('Matlab:adaptiveLobatto:Limits',...    'The limits of integration must be scalars.');end% default valuestol = 1e-6; parts = 2; maxFcnEvals = 20000; maxParts = 8000;% rewrite default options if neededfor j = 1 : length(varargin) / 2  eval([varargin{2 * j - 1},'=varargin{',int2str(2 * j),'};']);end% initial values, termination constant, parts of interval and integral valuem = parts; parts = 4 * parts + 1; Q = 0;minH = eps(b - a) / 1024; maxResolution = 0; iter = 0; poleWarning = 0;% width constantsalpha = sqrt(2/3); beta = sqrt(1/5);% check if interval has infinite boundaries, in case substitute functionif ~isfinite(a) || ~isfinite(b)  warning('Matlab:adaptiveLobatto:infiniteInterval',...    'The integral has an infinite interval; proceed with a substitution of function on finite interval.')  if ~isfinite(a) && isfinite(b)    [Q fcnEvals iter] = adaptiveLobatto(fcn, 0, b, varargin);    fcn = @(t) infiniteLeft(t, fcn);    a = 0; b = 1;  elseif isfinite(a) && ~isfinite(b)    [Q fcnEvals iter] = adaptiveLobatto(fcn, a, 0, varargin);    fcn = @(t) infiniteRight(t, fcn);    a = 0; b = 1;  else    fcn = @(t) infiniteBoth(t, fcn);    a = - pi / 2; b = pi / 2;  endend% initialize gridt = linspace(a, b, m + 1);A = t(1:end-1); B = t(2:end);% widths and midpoints of intervalsH = diff(t)/2; J = (A + B) / 2;% grid pointsF = -alpha * H + J; D = -beta * H + J; C =  J;E =  beta * H + J; G =  alpha * H + J;t = [A; F; D; C; E; G; B]; t = t(:);% function evaluationsy = fcn([A, F, D, C, E, G, B]); fcnEvals = 7 * m;% avoid infinities at start point of intervalif any(~isfinite(y(:,1)))  y(:,1) = fcn(a + eps(superiorfloat(a,b)) * (b - a));  fcnEvals = fcnEvals + 1;  poleWarning = 1;end% avoid infinities at end point of intervalif any(~isfinite(y(:, end)))  y(:, end) = fcn(b - eps(superiorfloat(a,b)) * (b - a));  fcnEvals = fcnEvals + 1;  poleWarning = 1;end% poles at initial pointsif ~isempty(find(~isfinite(max(abs(y))))), poleWarning = 1; end% hand over function valuesyA = y(:,     1 :   m); yF = y(:,   m+1 : 2*m); yD = y(:, 2*m+1 : 3*m);yC = y(:, 3*m+1 : 4*m); yE = y(:, 4*m+1 : 5*m); yG = y(:, 5*m+1 : 6*m);yB = y(:, 6*m+1 : end);% dimension of parallel integrationn = size(yA,1);% adaptive Lobatto iterationwhile 1  % number of iteration  iter = iter + 1;  % four point Lobatto formula  Q1 = kron(H, ones(n,1)) / 6 .* (yA + 5 * (yD + yE) + yB);  % seven point Kronrod formula  Q2 = kron(H, ones(n,1)) / 1470 .* (77 * (yA + yB) + 432 * (yF + yG) + 625 * (yD + yE) + 672 * yC);  % difference of Lobatto formulas  diffQ = Q2 - Q1; diffQ(find(isnan(diffQ))) = 0;  % intervals which do not fulfill termination criterion  idx = find(max(abs(diffQ), [], 1) > tol);  % intervals fulfill termination criterion  idxQ = setdiff(1:length(A), idx);  % check stop criterions  STOP1 = isempty(idx); % check regular termination  STOP2 = fcnEvals > maxFcnEvals;  % check maximal function evaluations  STOP3 = 5 * length(idx) > maxParts; % check maximal partition  % regular termination  if STOP1    Q = Q + sum(Q2, 2);    break  end  % check if maximal resolution reached  idxH = find(abs(H) < minH);  if ~isempty(idxH)    Q = Q + sum(Q2(idxH), 2);    idx = setdiff(idx, idxH);    idxQ = setdiff(idxQ, idxH);    maxResolution = 1;    % termination criterion    if isempty(idx), break, end  end  % maximal function evaluations reached  if STOP2    warning('Matlab:adaptiveLobatto:MaxEvaluations',...      'The maximal number of function evaluations reached; singularity likely.')    Q = Q + sum(Q2, 2);    break  end  % maximal partition reached  if STOP3    warning('Matlab:adaptiveLobatto:parts',...      'The maximal number of parts reached.')    Q = Q + sum(Q2, 2);    break  end  % update quadrature value  Q = Q + sum(Q2(:,idxQ) + diffQ(:,idxQ) / 15, 2);  % number of intervals  m = 6 * length(idx);  % initialize t  t = zeros(1, 6 * length(idx));  % hand over new start points A  t(1:6:end) = A(idx); t(2:6:end) = F(idx); t(3:6:end) = D(idx);  t(4:6:end) = C(idx); t(5:6:end) = E(idx); t(6:6:end) = G(idx);  A = t;  % hand over new end points B  t(1:6:end) = F(idx); t(2:6:end) = D(idx); t(3:6:end) = C(idx);  t(4:6:end) = E(idx); t(5:6:end) = G(idx); t(6:6:end) = B(idx);   B = t;  y = zeros(n, 6 * length(idx));  % hand over new start values A  y(:,1:6:end) = yA(:,idx); y(:,2:6:end) = yF(:,idx); y(:,3:6:end) = yD(:,idx);  y(:,4:6:end) = yC(:,idx); y(:,5:6:end) = yE(:,idx); y(:,6:6:end) = yG(:,idx);  yA = y;  % hand over new end values B  y(:,1:6:end) = yF(:,idx); y(:,2:6:end) = yD(:,idx); y(:,3:6:end) = yC(:,idx);  y(:,4:6:end) = yE(:,idx); y(:,5:6:end) = yG(:,idx); y(:,6:6:end) = yB(:,idx);   yB = y;  % widths and midpoints of intervals  H = (B - A) / 2; J = (A + B) / 2;  % calculate new mid points  F = -alpha * H + J; D = -beta * H + J; C =  J;  E =  beta * H + J; G =  alpha * H + J;  % function evaluations  y = fcn([F, D, C, E, G]); fcnEvals = fcnEvals + 5 * m;  % poles at new points  if ~isempty(find(~isfinite(max(abs(y))))), poleWarning = 1; end  % hand over new midpoint values of F D C E and G  yF = y(:,     1 :   m); yD = y(:,   m+1 : 2*m); yC = y(:, 2*m+1 : 3*m);   yE = y(:, 3*m+1 : 4*m); yG = y(:, 4*m+1 : 5*m);end% display warningsif any(~isfinite(Q))  warning('Matlab:adaptiveLobatto:Infinite',...    'The Quadrature of the function reached infinity or is Not-a-Number.')endif maxResolution  warning('Matlab:adaptiveLobatto:MaxResolution',...    'The maximal resolution of partial interval reached; singularity likely.')endif poleWarning  warning('Matlab:adaptiveLobatto:PoleDetection',...    'A detection of a pole; singularity likely.')endreturn% substitute function interval [-inf, 0] on [0, 1]function f = infiniteLeft(t, fcn)f = fcn(log(t));f = f ./ kron(ones(size(f,1),1), t);return% substitute function interval [0, inf] on [0, 1]function f = infiniteRight(t, fcn)f = fcn(-log(t));f = f ./ kron(ones(size(f,1),1), t);return% substitute function interval [-inf, inf] on [-pi / 2, pi / 2]function f = infiniteBoth(t, fcn)f = fcn(tan(t));f = f ./ kron(ones(size(f,1),1), cos(t).^2);return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -