⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 macroblock.c

📁 压缩JM12.3d的完整的全部C语言的代码文档,用于嵌入式系统的压缩编解码
💻 C
📖 第 1 页 / 共 5 页
字号:
      // restore the bitstream
      currStream->bits_to_go = currStream->stored_bits_to_go;
      currStream->byte_pos   = currStream->stored_byte_pos;
      currStream->byte_buf   = currStream->stored_byte_buf;
      skip = TRUE;
    }
    //! Check if the last coded macroblock fits into the size of the slice
    //! But only if this is not the first macroblock of this slice
    if (!new_slice)
    {
      if(slice_too_big(rlc_bits))
      {
        *recode_macroblock = TRUE;
        *end_of_slice      = TRUE;
      }
      else if(!img->cod_counter)
        skip = FALSE;
    }
    // maximum number of MBs

    // check if current slice group is finished
    if ((*recode_macroblock == FALSE) && (img->current_mb_nr == FmoGetLastCodedMBOfSliceGroup (FmoMB2SliceGroup (img->current_mb_nr))))
    {
      *end_of_slice = TRUE;
      if(!img->cod_counter)
        skip = FALSE;
    }

    //! (first MB OR first MB in a slice) AND bigger that maximum size of slice
    if (new_slice && slice_too_big(rlc_bits))
    {
      *end_of_slice = TRUE;
      if(!img->cod_counter)
        skip = FALSE;
    }
    if (!*recode_macroblock)
      currSlice->num_mb++;
    break;

  case  CALL_BACK:
    if (img->current_mb_nr > 0 && !new_slice)
    {
      if (currSlice->slice_too_big(rlc_bits))
      {
        *recode_macroblock = TRUE;
        *end_of_slice = TRUE;
      }
    }

    if ( (*recode_macroblock == FALSE) && (img->current_mb_nr == FmoGetLastCodedMBOfSliceGroup (FmoMB2SliceGroup (img->current_mb_nr))))
      *end_of_slice = TRUE;
    break;

  default:
    snprintf(errortext, ET_SIZE, "Slice Mode %d not supported", input->slice_mode);
    error(errortext, 600);
  }

  if (*recode_macroblock == TRUE)
  {
    // Restore everything
    for (i=0; i<currSlice->max_part_nr; i++)
    {
      dataPart = &(currSlice->partArr[i]);
      currStream = dataPart->bitstream;
      currStream->bits_to_go = currStream->stored_bits_to_go;
      currStream->byte_pos  = currStream->stored_byte_pos;
      currStream->byte_buf  = currStream->stored_byte_buf;
      stats->bit_slice      = stats->stored_bit_slice;

      if (input->symbol_mode == CABAC)
      {
        dataPart->ee_cabac = dataPart->ee_recode;
      }
    }
  }

  if (input->symbol_mode == UVLC)
  {
    // Skip MBs at the end of this slice
    dataPart = &(currSlice->partArr[partMap[SE_MBTYPE]]);
    if(*end_of_slice == TRUE  && skip == TRUE)
    {
      // only for Slice Mode 2 or 3
      // If we still have to write the skip, let's do it!
      if(img->cod_counter && *recode_macroblock == TRUE) // MB that did not fit in this slice
      {
        // If recoding is true and we have had skip,
        // we have to reduce the counter in case of recoding
        img->cod_counter--;
        if(img->cod_counter)
        {
          se.value1 = img->cod_counter;
          se.value2 = 0;
          se.type = SE_MBTYPE;
#if TRACE
          snprintf(se.tracestring, TRACESTRING_SIZE, "Final MB runlength = %3d",img->cod_counter);
#endif
          writeSE_UVLC(&se, dataPart);
          rlc_bits=se.len;
          currMB->bitcounter[BITS_MB_MODE]+=rlc_bits;
          img->cod_counter = 0;
        }
      }
      else //! MB that did not fit in this slice anymore is not a Skip MB
      {
        currStream = dataPart->bitstream;
        // update the bitstream
        currStream->bits_to_go = currStream->bits_to_go_skip;
        currStream->byte_pos  = currStream->byte_pos_skip;
        currStream->byte_buf  = currStream->byte_buf_skip;

        // update the statistics
        img->cod_counter = 0;
        skip = FALSE;
      }
    }

    // Skip MBs at the end of this slice for Slice Mode 0 or 1
    if(*end_of_slice == TRUE && img->cod_counter && !use_bitstream_backing)
    {
      se.value1 = img->cod_counter;
      se.value2 = 0;
      se.type = SE_MBTYPE;

      TRACE_SE (se.tracestring, "mb_skip_run");
      writeSE_UVLC(&se, dataPart);

      rlc_bits=se.len;
      currMB->bitcounter[BITS_MB_MODE]+=rlc_bits;
      img->cod_counter = 0;
    }
  }
}

/*!
 *****************************************************************************
 *
 * \brief
 *    For Slice Mode 2: Checks if one partition of one slice exceeds the
 *    allowed size
 *
 * \return
 *    FALSE if all Partitions of this slice are smaller than the allowed size
 *    TRUE is at least one Partition exceeds the limit
 *
 * \par Side effects
 *    none
 *
 * \date
 *    4 November 2001
 *
 * \author
 *    Tobias Oelbaum      drehvial@gmx.net
 *****************************************************************************/

 int slice_too_big(int rlc_bits)
 {
   Slice *currSlice = img->currentSlice;
   DataPartition *dataPart;
   Bitstream *currStream;
   EncodingEnvironmentPtr eep;
   int i;
   int size_in_bytes;

   //! UVLC
   if (input->symbol_mode == UVLC)
   {
     for (i=0; i<currSlice->max_part_nr; i++)
     {
       dataPart = &(currSlice->partArr[i]);
       currStream = dataPart->bitstream;
       size_in_bytes = currStream->byte_pos /*- currStream->tmp_byte_pos*/;

       if (currStream->bits_to_go < 8)
         size_in_bytes++;
       if (currStream->bits_to_go < rlc_bits)
         size_in_bytes++;
       if(size_in_bytes > input->slice_argument)
         return TRUE;
     }
   }

   //! CABAC
   if (input->symbol_mode ==CABAC)
   {
     for (i=0; i<currSlice->max_part_nr; i++)
     {
        dataPart= &(currSlice->partArr[i]);
        eep = &(dataPart->ee_cabac);

       if( arienco_bits_written(eep) > (input->slice_argument*8))
          return TRUE;
     }
   }
   return FALSE;
 }

/*!
 ************************************************************************
 * \brief
 *    Predict one component of a 4x4 Luma block
 ************************************************************************
 */
void OneComponentLumaPrediction4x4 ( imgpel*   mpred,          //!< array of prediction values (row by row)
                                     int    pic_pix_x,      //!< absolute horizontal coordinate of 4x4 block
                                     int    pic_pix_y,      //!< absolute vertical   coordinate of 4x4 block
                                     short* mv,             //!< motion vector
                                     short  ref,            //!< reference frame
                                     StorablePicture **list //!< reference picture list
                                     )
{
  int     j;
  imgpel *ref_line;

  width_pad  = list[ref]->size_x_pad;
  height_pad = list[ref]->size_y_pad;

  if( IS_INDEPENDENT(input) )
  {
    ref_line = UMVLine4X (list[ref]->p_imgY_sub[img->colour_plane_id], pic_pix_y + mv[1], pic_pix_x + mv[0]);
  }
  else
  {
    ref_line = UMVLine4X (list[ref]->imgY_sub, pic_pix_y + mv[1], pic_pix_x + mv[0]);
  }
  
  for (j = 0; j < BLOCK_SIZE; j++) 
  {
    memcpy(mpred, ref_line, BLOCK_SIZE * sizeof(imgpel));
    ref_line += img_padded_size_x;
    mpred += BLOCK_SIZE;
  }  
}


/*!
 ************************************************************************
 * \brief
 *    Predict one 4x4 Luma block
 ************************************************************************
 */
void LumaPrediction4x4 ( int   block_x,    //!< relative horizontal block coordinate of 4x4 block
                         int   block_y,    //!< relative vertical   block coordinate of 4x4 block
                         int   p_dir,      //!< prediction direction (0=list0, 1=list1, 2=bipred)
                         int   l0_mode,    //!< list0 prediction mode (1-7, 0=DIRECT if l1_mode=0)
                         int   l1_mode,    //!< list1 prediction mode (1-7, 0=DIRECT if l0_mode=0)
                         short l0_ref_idx, //!< reference frame for list0 prediction (-1: Intra4x4 pred. with l0_mode)
                         short l1_ref_idx  //!< reference frame for list1 prediction 
                         )
{
  static imgpel l0_pred[16];
  static imgpel l1_pred[16];

  int  i, j;
  int  block_x4     = block_x + 4;
  int  block_y4     = block_y + 4;
  int  pic_opix_x   = ((img->opix_x + block_x) << 2) + IMG_PAD_SIZE_TIMES4;
  int  pic_opix_y   = ((img->opix_y + block_y) << 2) + IMG_PAD_SIZE_TIMES4;
  int  bx           = block_x >> 2;
  int  by           = block_y >> 2;
  imgpel* l0pred    = l0_pred;
  imgpel* l1pred    = l1_pred;
  Macroblock* currMB = &img->mb_data[img->current_mb_nr];

  int  apply_weights = ( (active_pps->weighted_pred_flag && (img->type== P_SLICE || img->type == SP_SLICE)) ||
                         (active_pps->weighted_bipred_idc && (img->type== B_SLICE)));
  short**** mv_array = img->all_mv[by][bx];


  if (currMB->bi_pred_me && l0_ref_idx == 0 && l1_ref_idx == 0 && p_dir == 2 && l0_mode==1 && l1_mode==1)
  {
    mv_array = currMB->bi_pred_me == 1? img->bipred_mv1[by][bx] : img->bipred_mv2[by][bx];
  }

  switch (p_dir)
  {
  case 0:
    OneComponentLumaPrediction4x4 (l0_pred, pic_opix_x, pic_opix_y, mv_array[LIST_0][l0_ref_idx][l0_mode], l0_ref_idx, listX[0+currMB->list_offset]);   
    break;
  case 1:
    OneComponentLumaPrediction4x4 (l1_pred, pic_opix_x, pic_opix_y, mv_array[LIST_1][l1_ref_idx][l1_mode], l1_ref_idx, listX[1+currMB->list_offset]);   
    break;
  case 2:
    OneComponentLumaPrediction4x4 (l0_pred, pic_opix_x, pic_opix_y, mv_array[LIST_0][l0_ref_idx][l0_mode], l0_ref_idx, listX[0+currMB->list_offset]);   
    OneComponentLumaPrediction4x4 (l1_pred, pic_opix_x, pic_opix_y, mv_array[LIST_1][l1_ref_idx][l1_mode], l1_ref_idx, listX[1+currMB->list_offset]);   
    break;
  default:
    break;
  }

  if (apply_weights)
  {
    if (p_dir==2)
    {
      int wbp0 = wbp_weight[0][l0_ref_idx][l1_ref_idx][0];
      int wbp1 = wbp_weight[1][l0_ref_idx][l1_ref_idx][0];
      int offset = (wp_offset[0][l0_ref_idx][0] + wp_offset[1][l1_ref_idx][0] + 1)>>1;
      int wp_round = 2*wp_luma_round;
      int weight_denom = luma_log_weight_denom + 1;
      for   (j=block_y; j<block_y4; j++)
        for (i=block_x; i<block_x4; i++)  
          img->mpr[j][i] = iClip1( img->max_imgpel_value, 
          ((wbp0 * *l0pred++ + wbp1 * *l1pred++ + wp_round) >> (weight_denom)) + offset); 
    }
    else if (p_dir==0)
    {
      int wp = wp_weight[0][l0_ref_idx][0];
      int offset = wp_offset[0][l0_ref_idx][0];
      for   (j=block_y; j<block_y4; j++)
        for (i=block_x; i<block_x4; i++)
          img->mpr[j][i] = iClip1( img->max_imgpel_value, 
          ((wp * *l0pred++  + wp_luma_round) >> luma_log_weight_denom) + offset);
    }
    else // p_dir==1
    {
      int wp = wp_weight[1][l1_ref_idx][0];
      int offset = wp_offset[1][l1_ref_idx][0];
      for   (j=block_y; j<block_y4; j++)
        for (i=block_x; i<block_x4; i++)
          img->mpr[j][i] = iClip1( img->max_imgpel_value, 
          ((wp * *l1pred++  + wp_luma_round) >> luma_log_weight_denom) + offset );
    }
  }
  else
  {
    if (p_dir==2)
    {
      for   (j=block_y; j<block_y4; j++)
        for (i=block_x; i<block_x4; i++)
          img->mpr[j][i] = (*l0pred++ + *l1pred++ + 1) >> 1;
    }
    else if (p_dir==0)
    {
      for (j=block_y; j<block_y4; j++)
      {
        memcpy(&(img->mpr[j][block_x]), l0pred, BLOCK_SIZE * sizeof(imgpel));
        l0pred += BLOCK_SIZE;
      }
    }
    else // p_dir==1
    {
      for   (j=block_y; j<block_y4; j++)
      {
        memcpy(&(img->mpr[j][block_x]), l1pred, BLOCK_SIZE * sizeof(imgpel));
        l1pred += BLOCK_SIZE;
      }
    }
  }
}

/*!
 ************************************************************************
 * \brief
 *    Predict one 4x4 Luma block
 ************************************************************************
 */
void LumaPrediction4x4Bi ( int   block_x,    //!< relative horizontal block coordinate of 4x4 block
                           int   block_y,    //!< relative vertical   block coordinate of 4x4 block
                           int   l0_mode,    //!< list0 prediction mode (1-7, 0=DIRECT if l1_mode=0)
                           int   l1_mode,    //!< list1 prediction mode (1-7, 0=DIRECT if l0_mode=0)
                           short l0_ref_idx, //!< reference frame for list0 prediction (-1: Intra4x4 pred. with l0_mode)
                           short l1_ref_idx, //!< reference frame for list1 prediction 
                           int   list        //!< current list for prediction.
                           )
{
  static imgpel l0_pred[16];
  static imgpel l1_pred[16];

  int  i, j;
  int  block_x4  = block_x+4;
  int  block_y4  = block_y+4;
  int  pic_opix_x = ((img->opix_x + block_x) << 2) + IMG_PAD_SIZE_TIMES4;
  int  pic_opix_y = ((img->opix_y + block_y) << 2) + IMG_PAD_SIZE_TIMES4;
  int  bx        = block_x >> 2;
  int  by        = block_y >> 2;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -