⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 block.c

📁 压缩JM12.3d的完整的全部C语言的代码文档,用于嵌入式系统的压缩编解码
💻 C
📖 第 1 页 / 共 5 页
字号:
            m5[j]=img->m7[n2+j][i1];
          }
          
          m6[0] = (m5[0] + m5[2]);
          m6[1] = (m5[0] - m5[2]);
          m6[2] = (m5[1]>>1) - m5[3];
          m6[3] =  m5[1] + (m5[3]>>1);

          img->m7[n2  ][i1] = iClip1(img->max_imgpel_value_uv, rshift_rnd_sf((m6[0]+m6[3]+((long)img->mpr[n2  ][i1] << DQ_BITS)),DQ_BITS));
          img->m7[n2+1][i1] = iClip1(img->max_imgpel_value_uv, rshift_rnd_sf((m6[1]+m6[2]+((long)img->mpr[n2+1][i1] << DQ_BITS)),DQ_BITS));
          img->m7[n2+2][i1] = iClip1(img->max_imgpel_value_uv, rshift_rnd_sf((m6[1]-m6[2]+((long)img->mpr[n2+2][i1] << DQ_BITS)),DQ_BITS));
          img->m7[n2+3][i1] = iClip1(img->max_imgpel_value_uv, rshift_rnd_sf((m6[0]-m6[3]+((long)img->mpr[n2+3][i1] << DQ_BITS)),DQ_BITS));
        }
      }
    }

    //  Decoded block moved to memory
    for (j=0; j < img->mb_cr_size_y; j++)
    {
      pix_c_y = img->pix_c_y + j;
      for (i=0; i < img->mb_cr_size_x; i++)
      {
        pix_c_x = img->pix_c_x + i;
        enc_picture->imgUV[uv][pix_c_y][pix_c_x]= (imgpel) img->m7[j][i];
      }
    }
  }
  else
  {
    for (j=0; j < img->mb_cr_size_y; j++)
    {
      pix_c_y = img->pix_c_y + j;
      for (i=0; i < img->mb_cr_size_x; i++)
      {
        pix_c_x = img->pix_c_x + i;
        enc_picture->imgUV[uv][pix_c_y][pix_c_x]= (imgpel) img->m7[j][i] + img->mpr[j][i];
      }
    }
  }

  return cr_cbp;
}

/*!
 ************************************************************************
 * \brief
 *    The routine performs transform,quantization,inverse transform, adds the diff.
 *    to the prediction and writes the result to the decoded luma frame. Includes the
 *    RD constrained quantization also.
 *
 * \par Input:
 *    block_x,block_y: Block position inside a macro block (0,4,8,12).
 *
 * \par Output:
 *    nonzero: 0 if no levels are nonzero.  1 if there are nonzero levels.              \n
 *    coeff_cost: Counter for nonzero coefficients, used to discard expensive levels.
 *
 *
 ************************************************************************
 */
int dct_luma_sp(int block_x,int block_y,int *coeff_cost)
{
  int i,j,i1,j1,ilev,m5[4],m6[4],coeff_ctr;
  int qp_const,level,scan_pos,run;
  int nonzero;

  int predicted_block[BLOCK_SIZE][BLOCK_SIZE],c_err,qp_const2;
  int qp_per,qp_rem,q_bits;
  int qp_per_sp,qp_rem_sp,q_bits_sp;

  int   pos_x   = block_x >> BLOCK_SHIFT;
  int   pos_y   = block_y >> BLOCK_SHIFT;
  int   b8      = 2*(pos_y >> 1) + (pos_x >> 1);
  int   b4      = 2*(pos_y & 0x01) + (pos_x & 0x01);
  int*  ACLevel = img->cofAC[b8][b4][0];
  int*  ACRun   = img->cofAC[b8][b4][1];
  Macroblock *currMB = &img->mb_data[img->current_mb_nr];

  // For encoding optimization
  int c_err1, c_err2, level1, level2;
  double D_dis1, D_dis2;
  int len, info;
  double lambda_mode   = 0.85 * pow (2, (currMB->qp - SHIFT_QP)/3.0) * 4;

  qp_per    = qp_per_matrix[(currMB->qp - MIN_QP)];
  qp_rem    = qp_rem_matrix[(currMB->qp - MIN_QP)];
  q_bits    = Q_BITS + qp_per;
  qp_per_sp = qp_per_matrix[(currMB->qpsp - MIN_QP)];
  qp_rem_sp = qp_rem_matrix[(currMB->qpsp - MIN_QP)];
  q_bits_sp = Q_BITS + qp_per_sp;

  qp_const  = (1<<q_bits)/6;    // inter
  qp_const2 = (1<<q_bits_sp)/2;  //sp_pred

  //  Horizontal transform
  for (j=0; j< BLOCK_SIZE; j++)
    for (i=0; i< BLOCK_SIZE; i++)
    {
      img->m7[j][i]+=img->mpr[j+block_y][i+block_x];
      predicted_block[i][j]=img->mpr[j+block_y][i+block_x];
    }

  for (j=0; j < BLOCK_SIZE; j++)
  {
    for (i=0; i < 2; i++)
    {
      i1=3-i;
      m5[i]=img->m7[j][i]+img->m7[j][i1];
      m5[i1]=img->m7[j][i]-img->m7[j][i1];
    }
    img->m7[j][0]=(m5[0]+m5[1]);
    img->m7[j][2]=(m5[0]-m5[1]);
    img->m7[j][1]=m5[3]*2+m5[2];
    img->m7[j][3]=m5[3]-m5[2]*2;
  }

  //  Vertical transform

  for (i=0; i < BLOCK_SIZE; i++)
  {
    for (j=0; j < 2; j++)
    {
      j1=3-j;
      m5[j]=img->m7[j][i]+img->m7[j1][i];
      m5[j1]=img->m7[j][i]-img->m7[j1][i];
    }
    img->m7[0][i]=(m5[0]+m5[1]);
    img->m7[2][i]=(m5[0]-m5[1]);
    img->m7[1][i]=m5[3]*2+m5[2];
    img->m7[3][i]=m5[3]-m5[2]*2;
  }

  for (j=0; j < BLOCK_SIZE; j++)
  {
    for (i=0; i < 2; i++)
    {
      i1=3-i;
      m5[i]=predicted_block[i][j]+predicted_block[i1][j];
      m5[i1]=predicted_block[i][j]-predicted_block[i1][j];
    }
    predicted_block[0][j]=(m5[0]+m5[1]);
    predicted_block[2][j]=(m5[0]-m5[1]);
    predicted_block[1][j]=m5[3]*2+m5[2];
    predicted_block[3][j]=m5[3]-m5[2]*2;
  }

  //  Vertical transform

  for (i=0; i < BLOCK_SIZE; i++)
  {
    for (j=0; j < 2; j++)
    {
      j1=3-j;
      m5[j]=predicted_block[i][j]+predicted_block[i][j1];
      m5[j1]=predicted_block[i][j]-predicted_block[i][j1];
    }
    predicted_block[i][0]=(m5[0]+m5[1]);
    predicted_block[i][2]=(m5[0]-m5[1]);
    predicted_block[i][1]=m5[3]*2+m5[2];
    predicted_block[i][3]=m5[3]-m5[2]*2;
  }

  // Quant
  nonzero=FALSE;

  run=-1;
  scan_pos=0;

  for (coeff_ctr=0;coeff_ctr < 16;coeff_ctr++)     // 8 times if double scan, 16 normal scan
  {

    if (currMB->is_field_mode)
    {  // Alternate scan for field coding
        i=FIELD_SCAN[coeff_ctr][0];
        j=FIELD_SCAN[coeff_ctr][1];
    }
    else
    {
        i=SNGL_SCAN[coeff_ctr][0];
        j=SNGL_SCAN[coeff_ctr][1];
    }

    run++;
    ilev=0;

    // decide prediction

    // case 1
    level1 = (iabs (predicted_block[i][j]) * quant_coef[qp_rem_sp][i][j] + qp_const2) >> q_bits_sp;
    level1 = (level1 << q_bits_sp) / quant_coef[qp_rem_sp][i][j];
    c_err1 = img->m7[j][i]-isignab(level1, predicted_block[i][j]);
    level1 = (iabs (c_err1) * quant_coef[qp_rem][i][j] + qp_const) >> q_bits;

    // case 2
    c_err2=img->m7[j][i]-predicted_block[i][j];
    level2 = (iabs (c_err2) * quant_coef[qp_rem][i][j] + qp_const) >> q_bits;

    // select prediction
    if ((level1 != level2) && (level1 != 0) && (level2 != 0))
    {
      D_dis1 = img->m7[j][i] - ((isignab(level1,c_err1)*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6) - predicted_block[i][j];
      levrun_linfo_inter(level1, run, &len, &info);
      D_dis1 = D_dis1*D_dis1 + lambda_mode * len;

      D_dis2 = img->m7[j][i] - ((isignab(level2,c_err2)*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6) - predicted_block[i][j];
      levrun_linfo_inter(level2, run, &len, &info);
      D_dis2 = D_dis2 * D_dis2 + lambda_mode * len;

      if (D_dis1 == D_dis2)
        level = (iabs(level1) < iabs(level2)) ? level1 : level2;
      else
      {
        if (D_dis1 < D_dis2)
          level = level1;
        else
          level = level2;
      }
      c_err = (level == level1) ? c_err1 : c_err2;
    }
    else if (level1 == level2)
    {
      level = level1;
      c_err = c_err1;
    }
    else
    {
      level = (level1 == 0) ? level1 : level2;
      c_err = (level1 == 0) ? c_err1 : c_err2;
    }

    if (level != 0)
    {
      nonzero=TRUE;
      if (level > 1)
        *coeff_cost += MAX_VALUE;                // set high cost, shall not be discarded
      else
        *coeff_cost += COEFF_COST[input->disthres][run];
      ACLevel[scan_pos] = isignab(level,c_err);
      ACRun  [scan_pos] = run;
      ++scan_pos;
      run=-1;                     // reset zero level counter
      ilev=((isignab(level,c_err)*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6);
    }
    ilev+=predicted_block[i][j] ;
    if(!si_frame_indicator && !sp2_frame_indicator)//stores the SP frame coefficients in lrec, will be useful to encode these and create SI or SP switching frame
    {
      lrec[img->pix_y+block_y+j][img->pix_x+block_x+i]=
        isignab((iabs(ilev) * quant_coef[qp_rem_sp][i][j] + qp_const2) >> q_bits_sp, ilev);
    }
    img->m7[j][i] = isignab((iabs(ilev) * quant_coef[qp_rem_sp][i][j] + qp_const2)>> q_bits_sp, ilev) * dequant_coef[qp_rem_sp][i][j] << qp_per_sp;
  }
  ACLevel[scan_pos] = 0;


  //     IDCT.
  //     horizontal

  for (j=0; j < BLOCK_SIZE; j++)
  {
    for (i=0; i < BLOCK_SIZE; i++)
    {
      m5[i]=img->m7[j][i];
    }
    m6[0]=(m5[0]+m5[2]);
    m6[1]=(m5[0]-m5[2]);
    m6[2]=(m5[1]>>1)-m5[3];
    m6[3]=m5[1]+(m5[3]>>1);

    for (i=0; i < 2; i++)
    {
      i1=3-i;
      img->m7[j][i]=m6[i]+m6[i1];
      img->m7[j][i1]=m6[i]-m6[i1];
    }
  }

  //  vertical

  for (i=0; i < BLOCK_SIZE; i++)
  {
    for (j=0; j < BLOCK_SIZE; j++)
    {
      m5[j]=img->m7[j][i];
    }
    m6[0]=(m5[0]+m5[2]);
    m6[1]=(m5[0]-m5[2]);
    m6[2]=(m5[1]>>1)-m5[3];
    m6[3]=m5[1]+(m5[3]>>1);

    for (j=0; j < 2; j++)
    {
      j1=3-j;
      img->m7[j][i] =iClip3(0,img->max_imgpel_value,rshift_rnd_sf(m6[j]+m6[j1], DQ_BITS));
      img->m7[j1][i]=iClip3(0,img->max_imgpel_value,rshift_rnd_sf(m6[j]-m6[j1], DQ_BITS));
    }
  }

  //  Decoded block moved to frame memory

  for (j=0; j < BLOCK_SIZE; j++)
  for (i=0; i < BLOCK_SIZE; i++)
    enc_picture->imgY[img->pix_y+block_y+j][img->pix_x+block_x+i]= (imgpel) img->m7[j][i];

  return nonzero;
}

/*!
 ************************************************************************
 * \brief
 *    Transform,quantization,inverse transform for chroma.
 *    The main reason why this is done in a separate routine is the
 *    additional 2x2 transform of DC-coeffs. This routine is called
 *    once for each of the chroma components.
 *
 * \par Input:
 *    uv    : Make difference between the U and V chroma component               \n
 *    cr_cbp: chroma coded block pattern
 *
 * \par Output:
 *    cr_cbp: Updated chroma coded block pattern.
 ************************************************************************
 */
int dct_chroma_sp(int uv,int cr_cbp)
{
  int i,j,i1,j2,ilev,n2,n1,j1,mb_y,coeff_ctr,qp_const,c_err,level ,scan_pos,run;
  int m1[BLOCK_SIZE],m5[BLOCK_SIZE],m6[BLOCK_SIZE];
  int coeff_cost;
  int cr_cbp_tmp;
  int predicted_chroma_block[MB_BLOCK_SIZE>>1][MB_BLOCK_SIZE>>1],qp_const2,mp1[BLOCK_SIZE];
  Macroblock *currMB = &img->mb_data[img->current_mb_nr];

  int qp_per,qp_rem,q_bits;
  int qp_per_sp,qp_rem_sp,q_bits_sp;

  int   b4;
  int*  DCLevel = img->cofDC[uv+1][0];
  int*  DCRun   = img->cofDC[uv+1][1];
  int*  ACLevel;
  int*  ACRun;

  int c_err1, c_err2, level1, level2;
  int len, info;
  double D_dis1, D_dis2;
  double lambda_mode   = 0.85 * pow (2, (currMB->qp -SHIFT_QP)/3.0) * 4;


  int qpChroma = iClip3(-img->bitdepth_chroma_qp_scale, 51, currMB->qp + active_pps->chroma_qp_index_offset);
  int qpChromaSP=iClip3(-img->bitdepth_chroma_qp_scale, 51, currMB->qpsp + active_pps->chroma_qp_index_offset);

  qp_per    = ((qpChroma<0?qpChroma:QP_SCALE_CR[qpChroma])-MIN_QP)/6;
  qp_rem    = ((qpChroma<0?qpChroma:QP_SCALE_CR[qpChroma])-MIN_QP)%6;
  q_bits    = Q_BITS+qp_per;
  qp_const=(1<<q_bits)/6;    // inter
  qp_per_sp    = ((qpChromaSP<0?currMB->qpsp:QP_SCALE_CR[qpChromaSP])-MIN_QP)/6;
  qp_rem_sp    = ((qpChromaSP<0?currMB->qpsp:QP_SCALE_CR[qpChromaSP])-MIN_QP)%6;
  q_bits_sp    = Q_BITS+qp_per_sp;
  qp_const2=(1<<q_bits_sp)/2;  //sp_pred


  for (j=0; j < MB_BLOCK_SIZE>>1; j++)
    for (i=0; i < MB_BLOCK_SIZE>>1; i++)
    {
      img->m7[j][i]+=img->mpr[j][i];
      predicted_chroma_block[i][j]=img->mpr[j][i];
    }

  for (n2=0; n2 <= BLOCK_SIZE; n2 += BLOCK_SIZE)
  {
    for (n1=0; n1 <= BLOCK_SIZE; n1 += BLOCK_SIZE)
    {

      //  Horizontal transform.
      for (j=0; j < BLOCK_SIZE; j++)
      {
        mb_y=n2+j;
        for (i=0; i < 2; i++)
        {
          i1=3-i;
          m5[i]=img->m7[mb_y][i+n1]+img->m7[mb_y][i1+n1];
          m5[i1]=img->m7[mb_y][i+n1]-img->m7[mb_y][i1+n1];
        }
        img->m7[mb_y][n1]  =(m5[0]+m5[1]);
        img->m7[mb_y][n1+2]=(m5[0]-m5[1]);
        img->m7[mb_y][n1+1]=m5[3]*2+m5[2];
        img->m7[mb_y][n1+3]=m5[3]-m5[2]*2;
      }

      //  Vertical transform.

      for (i=0; i < BLOCK_SIZE; i++)
      {
        j1=n1+i;
        for (j=0; j < 2; j++)
        {
          j2=3-j;
          m5[j]=img->m7[n2+j][j1]+img->m7[n2+j2][j1];
          m5[j2]=img->m7[n2+j][j1]-img->m7[n2+j2][j1];
        }
        img->m7[n2  ][j1]=(m5[0]+m5[1]);
        img->m7[n2+2][j1]=(m5[0]-m5[1]);
        img->m7[n2+1][j1]=m5[3]*2+m5[2];
        img->m7[n2+3][j1]=m5[3]-m5[2]*2;
      }
    }
  }
  for (n2=0; n2 <= BLOCK_SIZE; n2 += BLOCK_SIZE)
  {
    for (n1=0; n1 <= BLOCK_SIZE; n1 += BLOCK_SIZE)
    {

      //  Horizontal transform.
      for (j=0; j < BLOCK_SIZE; j++)
      {
        mb_y=n2+j;
        for (i=0; i < 2; i++)
        {
          i1=3-i;
          m5[i]=predicted_chroma_block[i+n1][mb_y]+predicted_chroma_block[i1+n1][mb_y];
          m5[i1]=predicted_chroma_block[i+n1][mb_y]-predicted_chroma_block[i1+n1][mb_y];
        }
        predicted_chroma_block[n1][mb_y]  =(m5[0]+m5[1]);
        predicted_chroma_block[n1+2][mb_y]=(m5[0]-m5[1]);
        predicted_chroma_block[n1+1][mb_y]=m5[3]*2+m5[2];
        predicted_chroma_block[n1+3][mb_y]=m5[3]-m5[2]*2;
      }

      //  Vertical transform.

      for (i=0; i < BLOCK_SIZE; i++)
      {
        j1=n1+i;
        for (j=0; j < 2; j++)
        {
      

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -