📄 block.c
字号:
for (j=0;j<BLOCK_SIZE;j++)
{
memcpy(&M1[jj*BLOCK_SIZE + j][ii*BLOCK_SIZE], M0[jj][ii][j], BLOCK_SIZE * sizeof(int));
}
}
if(lossless_qpprime)
{
if(img->type!=SP_SLICE)
{
for (j=0;j<16;j++)
{
jj = img->pix_y+j;
for (i=0;i<16;i++)
enc_picture->imgY[jj][img->pix_x+i]=(imgpel)(M1[j][i]+img->mprr_2[new_intra_mode][j][i]);
}
}
else
{
for (j = 0; j < MB_BLOCK_SIZE; j++)
{
jj = img->pix_y+j;
for (i = 0; i < MB_BLOCK_SIZE ; i++)
{
enc_picture->imgY[jj][img->pix_x+i]=(imgpel)(M1[j][i]+img->mprr_2[new_intra_mode][j][i]);
lrec[jj][img->pix_x+i] = -16; //signals an I16 block in the SP frame
}
}
}
}
else
{
if(img->type!=SP_SLICE)
{
for (j=0;j<16;j++)
{
jj = img->pix_y+j;
for (i=0;i<16;i++)
enc_picture->imgY[jj][img->pix_x+i] =
iClip1( img->max_imgpel_value, rshift_rnd_sf((M1[j][i]+((long)img->mprr_2[new_intra_mode][j][i]<<DQ_BITS)),DQ_BITS));
}
}
else
{
for (j=0;j<16;j++)
{
jj = img->pix_y+j;
for (i=0;i<16;i++)
{
enc_picture->imgY[jj][img->pix_x+i] =
iClip1( img->max_imgpel_value, rshift_rnd_sf((M1[j][i]+((long)img->mprr_2[new_intra_mode][j][i]<<DQ_BITS)),DQ_BITS));
lrec[jj][img->pix_x+i]=-16; //signals an I16 block in the SP frame
}
}
}
}
return ac_coef;
}
/*!
************************************************************************
* \brief
* The routine performs transform,quantization,inverse transform, adds the diff.
* to the prediction and writes the result to the decoded luma frame. Includes the
* RD constrained quantization also.
*
* \par Input:
* block_x,block_y: Block position inside a macro block (0,4,8,12).
*
* \par Output_
* nonzero: 0 if no levels are nonzero. 1 if there are nonzero levels. \n
* coeff_cost: Counter for nonzero coefficients, used to discard expensive levels.
************************************************************************
*/
int dct_luma(int block_x,int block_y,int *coeff_cost, int intra)
{
int i,j, ilev, coeff_ctr;
static int m4[4][4], m5[4], m6[4];
int level,scan_pos = 0,run = -1;
int nonzero = FALSE;
int qp_per, qp_rem, q_bits;
int pos_x = block_x >> BLOCK_SHIFT;
int pos_y = block_y >> BLOCK_SHIFT;
int b8 = 2*(pos_y >> 1) + (pos_x >> 1);
int b4 = 2*(pos_y & 0x01) + (pos_x & 0x01);
int* ACLevel = img->cofAC[b8][b4][0];
int* ACRun = img->cofAC[b8][b4][1];
int pix_y, pix_x;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int qp = currMB->qp + img->bitdepth_luma_qp_scale - MIN_QP;
Boolean lossless_qpprime = (Boolean) (qp == 0 && img->lossless_qpprime_flag==1);
int **levelscale,**leveloffset;
int **invlevelscale;
const byte (*pos_scan)[2] = currMB->is_field_mode ? FIELD_SCAN : SNGL_SCAN;
qp_per = qp_per_matrix[qp];
qp_rem = qp_rem_matrix[qp];
q_bits = Q_BITS + qp_per;
// select scaling parameters
levelscale = ptLevelScale4x4Luma[intra][qp_rem];
invlevelscale = ptInvLevelScale4x4Luma[intra][qp_rem];
leveloffset = ptLevelOffset4x4Luma[intra][qp];
if (!lossless_qpprime)
{
// Horizontal transform
for (j=0; j < BLOCK_SIZE; j++)
{
m5[0] = img->m7[j][0]+img->m7[j][3];
m5[1] = img->m7[j][1]+img->m7[j][2];
m5[2] = img->m7[j][1]-img->m7[j][2];
m5[3] = img->m7[j][0]-img->m7[j][3];
m4[j][0] = m5[0] + m5[1];
m4[j][2] = m5[0] - m5[1];
m4[j][1] = (m5[3]<<1) + m5[2];
m4[j][3] = m5[3] - (m5[2]<<1);
}
// Vertical transform
for (i=0; i < BLOCK_SIZE; i++)
{
m5[0] = m4[0][i] + m4[3][i];
m5[1] = m4[1][i] + m4[2][i];
m5[2] = m4[1][i] - m4[2][i];
m5[3] = m4[0][i] - m4[3][i];
m4[0][i] = m5[0] + m5[1];
m4[2][i] = m5[0] - m5[1];
m4[1][i] = (m5[3]<<1) + m5[2];
m4[3][i] = m5[3] - (m5[2]<<1);
}
// Quant
for (coeff_ctr=0;coeff_ctr < 16;coeff_ctr++)
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
ilev=0;
level = (iabs (m4[j][i]) * levelscale[j][i] + leveloffset[j][i]) >> q_bits;
if (img->AdaptiveRounding)
{
img->fadjust4x4[intra][block_y+j][block_x+i] = (level == 0)
? 0
: rshift_rnd_sf((AdaptRndWeight * (iabs(m4[j][i]) * levelscale[j][i] - (level << q_bits))), q_bits + 1);
}
if (level != 0)
{
nonzero=TRUE;
*coeff_cost += (level > 1) ? MAX_VALUE : COEFF_COST[input->disthres][run];
ACLevel[scan_pos] = isignab(level,m4[j][i]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1; // reset zero level counter
level = isignab(level, m4[j][i]);
ilev = rshift_rnd_sf(((level*invlevelscale[j][i])<< qp_per), 4);
}
m4[j][i]=ilev;
}
ACLevel[scan_pos] = 0;
if (scan_pos)
{
// IDCT.
// horizontal
for (j=0; j < BLOCK_SIZE; j++)
{
m6[0]=(m4[j][0] + m4[j][2]);
m6[1]=(m4[j][0] - m4[j][2]);
m6[2]=(m4[j][1]>>1) - m4[j][3];
m6[3]= m4[j][1] + (m4[j][3]>>1);
m4[j][0] = m6[0] + m6[3];
m4[j][1] = m6[1] + m6[2];
m4[j][2] = m6[1] - m6[2];
m4[j][3] = m6[0] - m6[3];
}
// vertical
for (i=0; i < BLOCK_SIZE; i++)
{
m6[0]=(m4[0][i] + m4[2][i]);
m6[1]=(m4[0][i] - m4[2][i]);
m6[2]=(m4[1][i]>>1) - m4[3][i];
m6[3]= m4[1][i] + (m4[3][i]>>1);
img->m7[0][i] = m6[0]+m6[3];
img->m7[1][i] = m6[1]+m6[2];
img->m7[2][i] = m6[1]-m6[2];
img->m7[3][i] = m6[0]-m6[3];
}
// generate final block
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < BLOCK_SIZE; i++)
{
enc_picture->imgY[img->pix_y + block_y + j][img->pix_x + block_x + i]
= iClip1( img->max_imgpel_value, rshift_rnd_sf((img->m7[j][i]+((long)img->mpr[block_y + j][block_x + i] << DQ_BITS)),DQ_BITS));
}
}
}
else // no transformed residual;
{
for (j=block_y; j < block_y + BLOCK_SIZE; j++)
{
memcpy(&(enc_picture->imgY[img->pix_y + j][img->pix_x + block_x]),&(img->mpr[j][block_x]), BLOCK_SIZE * sizeof(imgpel));
}
}
}
else // Lossless qpprime code
{
for (coeff_ctr=0;coeff_ctr < 16;coeff_ctr++)
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
ilev=0;
level = iabs (img->m7[j][i]);
if (img->AdaptiveRounding)
{
img->fadjust4x4[intra][block_y+j][block_x+i] = 0;
}
if (level != 0)
{
nonzero=TRUE;
*coeff_cost += MAX_VALUE;
ACLevel[scan_pos] = isignab(level,img->m7[j][i]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1; // reset zero level counter
level=isignab(level, m4[j][i]);
ilev=level;
}
}
ACLevel[scan_pos] = 0;
for (j=0; j < BLOCK_SIZE; j++)
{
pix_y = img->pix_y + block_y + j;
pix_x = img->pix_x+block_x;
for (i=0; i < BLOCK_SIZE; i++)
{
enc_picture->imgY[pix_y][pix_x+i]=img->m7[j][i]+img->mpr[j+block_y][i+block_x];
}
}
}
return nonzero;
}
/*!
************************************************************************
* \brief
* Transform,quantization,inverse transform for chroma.
* The main reason why this is done in a separate routine is the
* additional 2x2 transform of DC-coeffs. This routine is called
* once for each of the chroma components.
*
* \par Input:
* uv : Make difference between the U and V chroma component \n
* cr_cbp: chroma coded block pattern
*
* \par Output:
* cr_cbp: Updated chroma coded block pattern.
************************************************************************
*/
int dct_chroma(int uv,int cr_cbp)
{
int i,j,i1,j2,ilev,n2,n1,j1,mb_y,coeff_ctr,level ,scan_pos,run;
static int m1[BLOCK_SIZE],m5[BLOCK_SIZE],m6[BLOCK_SIZE];
int coeff_cost;
int cr_cbp_tmp;
int DCcoded=0 ;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int qp_per,qp_rem,q_bits;
int b4;
int* DCLevel = img->cofDC[uv+1][0];
int* DCRun = img->cofDC[uv+1][1];
int* ACLevel;
int* ACRun;
int intra = IS_INTRA (currMB);
int uv_scale = uv*(img->num_blk8x8_uv >> 1);
//FRExt
static const int64 cbpblk_pattern[4]={0, 0xf0000, 0xff0000, 0xffff0000};
int yuv = img->yuv_format;
int b8;
static int m3[4][4];
static int m4[4][4];
int qp_per_dc = 0;
int qp_rem_dc = 0;
int q_bits_422 = 0;
int ***levelscale, ***leveloffset;
int ***invlevelscale;
short pix_c_x, pix_c_y;
const byte (*pos_scan)[2] = currMB->is_field_mode ? FIELD_SCAN : SNGL_SCAN;
int cur_qp = currMB->qpc[uv] + img->bitdepth_chroma_qp_scale;
int cur_qp_dc = currMB->qpc[uv] + 3 + img->bitdepth_chroma_qp_scale;
Boolean lossless_qpprime = (Boolean) ((currMB->qp + img->bitdepth_luma_qp_scale)==0 && img->lossless_qpprime_flag==1);
qp_per = qp_per_matrix[cur_qp];
qp_rem = qp_rem_matrix[cur_qp];
q_bits = Q_BITS+qp_per;
levelscale = LevelScale4x4Chroma[uv][intra];
leveloffset = LevelOffset4x4Chroma[uv][intra];
invlevelscale = InvLevelScale4x4Chroma[uv][intra];
if (img->yuv_format == YUV422)
{
//for YUV422 only
qp_per_dc = qp_per_matrix[cur_qp_dc];
qp_rem_dc = qp_rem_matrix[cur_qp_dc];
q_bits_422 = Q_BITS + qp_per_dc;
}
//============= dct transform ===============
if (!lossless_qpprime)
{
for (n2=0; n2 < img->mb_cr_size_y; n2 += BLOCK_SIZE)
{
for (n1=0; n1 < img->mb_cr_size_x; n1 += BLOCK_SIZE)
{
// Horizontal transform.
for (j=0; j < BLOCK_SIZE; j++)
{
mb_y=n2+j;
m5[0]=img->m7[mb_y][n1 ]+img->m7[mb_y][n1+3];
m5[1]=img->m7[mb_y][n1+1]+img->m7[mb_y][n1+2];
m5[2]=img->m7[mb_y][n1+1]-img->m7[mb_y][n1+2];
m5[3]=img->m7[mb_y][n1 ]-img->m7[mb_y][n1+3];
img->m7[mb_y][n1 ] = (m5[0] + m5[1]);
img->m7[mb_y][n1+2] = (m5[0] - m5[1]);
img->m7[mb_y][n1+1] = (m5[3]<<1) + m5[2];
img->m7[mb_y][n1+3] = m5[3] - (m5[2]<<1);
}
// Vertical transform.
for (i=0; i < BLOCK_SIZE; i++)
{
j1=n1+i;
m5[0] = img->m7[n2 ][j1] + img->m7[n2+3][j1];
m5[1] = img->m7[n2+1][j1] + img->m7[n2+2][j1];
m5[2] = img->m7[n2+1][j1] - img->m7[n2+2][j1];
m5[3] = img->m7[n2 ][j1] - img->m7[n2+3][j1];
img->m7[n2 ][j1] = (m5[0] + m5[1]);
img->m7[n2+2][j1] = (m5[0] - m5[1]);
img->m7[n2+1][j1] = (m5[3]<<1) + m5[2];
img->m7[n2+3][j1] = m5[3] - (m5[2]<<1);
}
}
}
}
if (yuv == YUV420)
{
//================== CHROMA DC YUV420 ===================
// 2X2 transform of DC coeffs.
run=-1;
scan_pos=0;
if(!lossless_qpprime)
{
m1[0]=(img->m7[0][0] + img->m7[0][4] + img->m7[4][0] + img->m7[4][4]);
m1[1]=(img->m7[0][0] - img->m7[0][4] + img->m7[4][0] - img->m7[4][4]);
m1[2]=(img->m7[0][0] + img->m7[0][4] - img->m7[4][0] - img->m7[4][4]);
m1[3]=(img->m7[0][0] - img->m7[0][4] - img->m7[4][0] + img->m7[4][4]);
// Quant of chroma 2X2 coeffs.
for (coeff_ctr=0; coeff_ctr < 4; coeff_ctr++)
{
run++;
ilev=0;
level =(iabs(m1[coeff_ctr]) * levelscale[qp_rem][0][0] + (leveloffset[cur_qp][0][0]<<1)) >> (q_bits+1);
if (input->symbol_mode == UVLC && img->qp < 4)
{
if (level > CAVLC_LEVEL_LIMIT)
level = CAVLC_LEVEL_LIMIT;
}
if (level != 0)
{
currMB->cbp_blk |= 0xf0000 << (uv << 2) ; // if one of the 2x2-DC levels is != 0 set the
cr_cbp=imax(1,cr_cbp); // coded-bit all 4 4x4 blocks (bit 16-19 or 20-23)
DCcoded = 1 ;
DCLevel[scan_pos] = isignab(level ,m1[coeff_ctr]);
DCRun [scan_pos] = run;
scan_pos++;
run=-1;
ilev=isignab(level, m1[coeff_ctr]);
}
m1[coeff_ctr]=ilev;
}
DCLevel[scan_pos] = 0;
// Inverse transform of 2x2 DC levels
m5[0]=(m1[0] + m1[1] + m1[2] + m1[3]);
m5[1]=(m1[0] - m1[1] + m1[2] - m1[3]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -