📄 block.c
字号:
PixelPos left[17]; //!< pixel positions p(-1, -1..15)
int up_avail, left_avail, left_up_avail;
for (i=0;i<17;i++)
{
getNeighbour(mb_nr, -1, i-1, IS_LUMA, &left[i]);
}
getNeighbour(mb_nr, 0, -1, IS_LUMA, &up);
if (!(input->UseConstrainedIntraPred))
{
up_avail = up.available;
left_avail = left[1].available;
left_up_avail = left[0].available;
}
else
{
up_avail = up.available ? img->intra_block[up.mb_addr] : 0;
for (i=1, left_avail=1; i<17;i++)
left_avail &= left[i].available ? img->intra_block[left[i].mb_addr]: 0;
left_up_avail = left[0].available ? img->intra_block[left[0].mb_addr]: 0;
}
s1=s2=0;
// make DC prediction
if (up_avail)
{
for (i=up.pos_x; i < up.pos_x + MB_BLOCK_SIZE; i++)
s1 += imgY_pred[up.pos_y][i]; // sum hor pix
}
if (left_avail)
{
for (i=1; i < MB_BLOCK_SIZE + 1; i++)
s2 += imgY_pred[left[i].pos_y][left[i].pos_x]; // sum vert pix
}
if (up_avail)
{
s0= left_avail
? rshift_rnd_sf((s1+s2),(MB_BLOCK_SHIFT + 1)) // no edge
: rshift_rnd_sf(s1, MB_BLOCK_SHIFT); // left edge
}
else
{
s0=left_avail
? rshift_rnd_sf(s2, MB_BLOCK_SHIFT) // upper edge
: img->dc_pred_value_luma; // top left corner, nothing to predict from
}
// vertical prediction
if (up_avail)
memcpy(s[0], &imgY_pred[up.pos_y][up.pos_x], MB_BLOCK_SIZE * sizeof(imgpel));
// horizontal prediction
if (left_avail)
{
for (i=1; i < MB_BLOCK_SIZE + 1; i++)
s[1][i - 1]=imgY_pred[left[i].pos_y][left[i].pos_x];
}
for (j=0; j < MB_BLOCK_SIZE; j++)
{
memcpy(img->mprr_2[VERT_PRED_16][j], s[0], MB_BLOCK_SIZE * sizeof(imgpel)); // store vertical prediction
for (i=0; i < MB_BLOCK_SIZE; i++)
{
img->mprr_2[HOR_PRED_16 ][j][i] = s[1][j]; // store horizontal prediction
img->mprr_2[DC_PRED_16 ][j][i] = s0; // store DC prediction
}
}
if (!up_avail || !left_avail || !left_up_avail) // edge
return;
// 16 bit integer plan pred
ih=0;
iv=0;
for (i=1;i<9;i++)
{
if (i<8)
ih += i*(imgY_pred[up.pos_y][up.pos_x+7+i] - imgY_pred[up.pos_y][up.pos_x+7-i]);
else
ih += i*(imgY_pred[up.pos_y][up.pos_x+7+i] - imgY_pred[left[0].pos_y][left[0].pos_x]);
iv += i*(imgY_pred[left[8+i].pos_y][left[8+i].pos_x] - imgY_pred[left[8-i].pos_y][left[8-i].pos_x]);
}
ib=(5*ih+32)>>6;
ic=(5*iv+32)>>6;
iaa=16*(imgY_pred[up.pos_y][up.pos_x+15]+imgY_pred[left[16].pos_y][left[16].pos_x]);
for (j=0;j< MB_BLOCK_SIZE;j++)
{
for (i=0;i< MB_BLOCK_SIZE;i++)
{
img->mprr_2[PLANE_16][j][i]= iClip3( 0, img->max_imgpel_value,rshift_rnd_sf((iaa+(i-7)*ib +(j-7)*ic), 5));// store plane prediction
}
}
}
/*!
************************************************************************
* \brief
* For new intra pred routines
*
* \par Input:
* Image par, 16x16 based intra mode
*
* \par Output:
* none
************************************************************************
*/
int dct_luma_16x16(int new_intra_mode)
{
//int qp_const;
int i,j;
int ii,jj;
int jdiv, jmod;
static int M1[16][16];
static int M4[4][4];
static int M5[4],M6[4];
static int M0[4][4][4][4];
int run,scan_pos,coeff_ctr,level;
int qp_per,qp_rem,q_bits;
int ac_coef = 0;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int b8, b4;
int* DCLevel = img->cofDC[0][0];
int* DCRun = img->cofDC[0][1];
int* ACLevel;
int* ACRun;
int **levelscale,**leveloffset;
int **invlevelscale;
int qp = currMB->qp + img->bitdepth_luma_qp_scale - MIN_QP;
Boolean lossless_qpprime = (Boolean) ((qp == 0) && (img->lossless_qpprime_flag == 1));
const byte (*pos_scan)[2] = currMB->is_field_mode ? FIELD_SCAN : SNGL_SCAN;
// Note that we could just use currMB->qp here
qp_per = qp_per_matrix[qp];
qp_rem = qp_rem_matrix[qp];
q_bits = Q_BITS + qp_per;
// select scaling parameters
levelscale = ptLevelScale4x4Luma [1][qp_rem];
invlevelscale = ptInvLevelScale4x4Luma[1][qp_rem];
leveloffset = ptLevelOffset4x4Luma [1][qp]; // note that we could always use "qp" here. will change it in the next commit
for (j=0;j<16;j++)
{
jdiv = j >> 2;
jmod = j & 0x03;
jj = img->opix_y+j;
for (i=0;i<16;i++)
{
M1[j][i] = imgY_org[jj][img->opix_x+i] - img->mprr_2[new_intra_mode][j][i];
M0[jdiv][i >> 2][jmod][i & 0x03] = M1[j][i];
}
}
if (!lossless_qpprime)
{
for (jj=0;jj<4;jj++)
{
for (ii=0;ii<4;ii++)
{
for (j=0;j<4;j++)
{
M5[0] = M0[jj][ii][j][0] + M0[jj][ii][j][3];
M5[1] = M0[jj][ii][j][1] + M0[jj][ii][j][2];
M5[2] = M0[jj][ii][j][1] - M0[jj][ii][j][2];
M5[3] = M0[jj][ii][j][0] - M0[jj][ii][j][3];
M4[j][0] = M5[0] + M5[1];
M4[j][2] = M5[0] - M5[1];
M4[j][1] = (M5[3] << 1) + M5[2];
M4[j][3] = M5[3] - (M5[2] << 1);
}
// vertical
for (i=0;i<4;i++)
{
M5[0] = M4[0][i] + M4[3][i];
M5[1] = M4[1][i] + M4[2][i];
M5[2] = M4[1][i] - M4[2][i];
M5[3] = M4[0][i] - M4[3][i];
M0[jj][ii][0][i] = M5[0] + M5[1];
M0[jj][ii][2][i] = M5[0] - M5[1];
M0[jj][ii][1][i] = (M5[3] << 1) + M5[2];
M0[jj][ii][3][i] = M5[3] - (M5[2] << 1);
}
}
}
// pick out DC coeff
for (j=0;j<4;j++)
{
for (i=0;i<4;i++)
M4[j][i]= M0[j][i][0][0];
}
for (j=0;j<4;j++)
{
M5[0] = M4[j][0]+M4[j][3];
M5[1] = M4[j][1]+M4[j][2];
M5[2] = M4[j][1]-M4[j][2];
M5[3] = M4[j][0]-M4[j][3];
M4[j][0] = M5[0]+M5[1];
M4[j][2] = M5[0]-M5[1];
M4[j][1] = M5[3]+M5[2];
M4[j][3] = M5[3]-M5[2];
}
// vertical
for (i=0;i<4;i++)
{
M5[0] = M4[0][i]+M4[3][i];
M5[1] = M4[1][i]+M4[2][i];
M5[2] = M4[1][i]-M4[2][i];
M5[3] = M4[0][i]-M4[3][i];
M4[0][i]=(M5[0]+M5[1])>>1;
M4[2][i]=(M5[0]-M5[1])>>1;
M4[1][i]=(M5[3]+M5[2])>>1;
M4[3][i]=(M5[3]-M5[2])>>1;
}
// quant
run=-1;
scan_pos=0;
for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
level= (iabs(M4[j][i]) * levelscale[0][0] + (leveloffset[0][0]<<1)) >> (q_bits+1);
if (input->symbol_mode == UVLC && img->qp < 10)
{
if (level > CAVLC_LEVEL_LIMIT)
level = CAVLC_LEVEL_LIMIT;
}
if (level != 0)
{
DCLevel[scan_pos] = isignab(level,M4[j][i]);
DCRun [scan_pos] = run;
++scan_pos;
run=-1;
}
M4[j][i]=isignab(level,M4[j][i]);
}
DCLevel[scan_pos]=0;
// inverse DC transform
for (j=0;j<4;j++)
{
M6[0] = M4[j][0] + M4[j][2];
M6[1] = M4[j][0] - M4[j][2];
M6[2] = M4[j][1] - M4[j][3];
M6[3] = M4[j][1] + M4[j][3];
M4[j][0] = M6[0] + M6[3];
M4[j][1] = M6[1] + M6[2];
M4[j][2] = M6[1] - M6[2];
M4[j][3] = M6[0] - M6[3];
}
for (i=0;i<4;i++)
{
M6[0] = M4[0][i] + M4[2][i];
M6[1] = M4[0][i] - M4[2][i];
M6[2] = M4[1][i] - M4[3][i];
M6[3] = M4[1][i] + M4[3][i];
M0[0][i][0][0] = rshift_rnd_sf(((M6[0]+M6[3])*invlevelscale[0][0])<<qp_per,6);
M0[1][i][0][0] = rshift_rnd_sf(((M6[1]+M6[2])*invlevelscale[0][0])<<qp_per,6);
M0[2][i][0][0] = rshift_rnd_sf(((M6[1]-M6[2])*invlevelscale[0][0])<<qp_per,6);
M0[3][i][0][0] = rshift_rnd_sf(((M6[0]-M6[3])*invlevelscale[0][0])<<qp_per,6);
}
}
else // lossless_qpprime
{
// pick out DC coeff
for (j=0;j<4;j++)
{
for (i=0;i<4;i++)
M4[j][i]= M0[j][i][0][0];
}
run=-1;
scan_pos=0;
for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
level= iabs(M4[j][i]);
if (input->symbol_mode == UVLC && img->qp < 10 && level > CAVLC_LEVEL_LIMIT)
level = CAVLC_LEVEL_LIMIT;
if (level != 0)
{
DCLevel[scan_pos] = isignab(level,M4[j][i]);
DCRun [scan_pos] = run;
++scan_pos;
run=-1;
}
}
DCLevel[scan_pos]=0;
}
// AC inverse trans/quant for MB
for (jj=0;jj<4;jj++)
{
for (ii=0;ii<4;ii++)
{
for (j=0;j<4;j++)
{
memcpy(M4[j],M0[jj][ii][j], BLOCK_SIZE * sizeof(int));
}
run = -1;
scan_pos = 0;
b8 = 2*(jj >> 1) + (ii >> 1);
b4 = 2*(jj & 0x01) + (ii & 0x01);
ACLevel = img->cofAC [b8][b4][0];
ACRun = img->cofAC [b8][b4][1];
if(!lossless_qpprime)
{
for (coeff_ctr=1;coeff_ctr<16;coeff_ctr++) // set in AC coeff
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
level= ( iabs( M4[j][i]) * levelscale[j][i] + leveloffset[j][i]) >> q_bits;
if (img->AdaptiveRounding)
{
img->fadjust4x4[2][jj*BLOCK_SIZE+j][ii*BLOCK_SIZE+i] = (level == 0) ? 0
: rshift_rnd_sf((AdaptRndWeight * (iabs(M4[j][i]) * levelscale[j][i] - (level << q_bits))),(q_bits + 1));
}
if (level != 0)
{
ac_coef = 15;
ACLevel[scan_pos] = isignab(level,M4[j][i]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1;
}
level=isignab(level, M4[j][i]);
M4[j][i]=rshift_rnd_sf((level*invlevelscale[j][i])<<qp_per, 4);
}
ACLevel[scan_pos] = 0;
// IDCT horizontal
for (j=0;j<4 ;j++)
{
M6[0] = M4[j][0] + M4[j][2];
M6[1] = M4[j][0] - M4[j][2];
M6[2] =(M4[j][1]>>1) - M4[j][3];
M6[3] = M4[j][1] + (M4[j][3]>>1);
M4[j][0] = M6[0] + M6[3];
M4[j][1] = M6[1] + M6[2];
M4[j][2] = M6[1] - M6[2];
M4[j][3] = M6[0] - M6[3];
}
// vertical
for (i=0;i<4;i++)
{
M6[0]= M4[0][i] + M4[2][i];
M6[1]= M4[0][i] - M4[2][i];
M6[2]=(M4[1][i]>>1) - M4[3][i];
M6[3]= M4[1][i] + (M4[3][i]>>1);
M0[jj][ii][0][i] = M6[0] + M6[3];
M0[jj][ii][1][i] = M6[1] + M6[2];
M0[jj][ii][2][i] = M6[1] - M6[2];
M0[jj][ii][3][i] = M6[0] - M6[3];
}
}
else // Lossless qpprime code
{
for (coeff_ctr=1;coeff_ctr<16;coeff_ctr++) // set in AC coeff
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
level= iabs( M4[j][i]);
if (level != 0)
{
ac_coef = 15;
ACLevel[scan_pos] = isignab(level,M4[j][i]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1;
}
// set adaptive rounding params to 0 since process is not meaningful here.
if (img->AdaptiveRounding)
{
img->fadjust4x4[2][jj*BLOCK_SIZE+j][ii*BLOCK_SIZE+i] = 0;
}
}
ACLevel[scan_pos] = 0;
}
}
}
for (jj=0;jj<BLOCK_MULTIPLE; jj++)
{
for (ii=0;ii<BLOCK_MULTIPLE; ii++)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -