⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 block.c

📁 压缩JM12.3d的完整的全部C语言的代码文档,用于嵌入式系统的压缩编解码
💻 C
📖 第 1 页 / 共 5 页
字号:
  PixelPos left[17];    //!< pixel positions p(-1, -1..15)

  int up_avail, left_avail, left_up_avail;

  for (i=0;i<17;i++)
  {
    getNeighbour(mb_nr, -1,  i-1, IS_LUMA, &left[i]);
  }

  getNeighbour(mb_nr,    0,   -1, IS_LUMA, &up);

  if (!(input->UseConstrainedIntraPred))
  {
    up_avail      = up.available;
    left_avail    = left[1].available;
    left_up_avail = left[0].available;
  }
  else
  {
    up_avail      = up.available ? img->intra_block[up.mb_addr] : 0;
    for (i=1, left_avail=1; i<17;i++)
      left_avail  &= left[i].available ? img->intra_block[left[i].mb_addr]: 0;
    left_up_avail = left[0].available ? img->intra_block[left[0].mb_addr]: 0;
  }

  s1=s2=0;
  // make DC prediction
  if (up_avail)
  {
    for (i=up.pos_x; i < up.pos_x + MB_BLOCK_SIZE; i++)
      s1 += imgY_pred[up.pos_y][i];    // sum hor pix
  }

  if (left_avail)
  {
    for (i=1; i < MB_BLOCK_SIZE + 1; i++)
      s2 += imgY_pred[left[i].pos_y][left[i].pos_x];    // sum vert pix
  }

  if (up_avail)
  {
    s0= left_avail
      ? rshift_rnd_sf((s1+s2),(MB_BLOCK_SHIFT + 1)) // no edge
      : rshift_rnd_sf(s1, MB_BLOCK_SHIFT);          // left edge
  }
  else
  {
    s0=left_avail
      ? rshift_rnd_sf(s2, MB_BLOCK_SHIFT)           // upper edge
      : img->dc_pred_value_luma;                        // top left corner, nothing to predict from
  }

  // vertical prediction
  if (up_avail)
    memcpy(s[0], &imgY_pred[up.pos_y][up.pos_x], MB_BLOCK_SIZE * sizeof(imgpel));

  // horizontal prediction
  if (left_avail)
  {
    for (i=1; i < MB_BLOCK_SIZE + 1; i++)
      s[1][i - 1]=imgY_pred[left[i].pos_y][left[i].pos_x];
  }

  for (j=0; j < MB_BLOCK_SIZE; j++)
  {
    memcpy(img->mprr_2[VERT_PRED_16][j], s[0], MB_BLOCK_SIZE * sizeof(imgpel)); // store vertical prediction
    for (i=0; i < MB_BLOCK_SIZE; i++)
    {
      img->mprr_2[HOR_PRED_16 ][j][i] = s[1][j]; // store horizontal prediction
      img->mprr_2[DC_PRED_16  ][j][i] = s0;      // store DC prediction
    }
  }
  if (!up_avail || !left_avail || !left_up_avail) // edge
    return;

  // 16 bit integer plan pred

  ih=0;
  iv=0;
  for (i=1;i<9;i++)
  {
    if (i<8)
      ih += i*(imgY_pred[up.pos_y][up.pos_x+7+i] - imgY_pred[up.pos_y][up.pos_x+7-i]);
    else
      ih += i*(imgY_pred[up.pos_y][up.pos_x+7+i] - imgY_pred[left[0].pos_y][left[0].pos_x]);

    iv += i*(imgY_pred[left[8+i].pos_y][left[8+i].pos_x] - imgY_pred[left[8-i].pos_y][left[8-i].pos_x]);
  }
  ib=(5*ih+32)>>6;
  ic=(5*iv+32)>>6;

  iaa=16*(imgY_pred[up.pos_y][up.pos_x+15]+imgY_pred[left[16].pos_y][left[16].pos_x]);

  for (j=0;j< MB_BLOCK_SIZE;j++)
  {
    for (i=0;i< MB_BLOCK_SIZE;i++)
    {
      img->mprr_2[PLANE_16][j][i]= iClip3( 0, img->max_imgpel_value,rshift_rnd_sf((iaa+(i-7)*ib +(j-7)*ic), 5));// store plane prediction
    }
  }
}


/*!
 ************************************************************************
 * \brief
 *    For new intra pred routines
 *
 * \par Input:
 *    Image par, 16x16 based intra mode
 *
 * \par Output:
 *    none
 ************************************************************************
 */
int dct_luma_16x16(int new_intra_mode)
{
  //int qp_const;
  int i,j;
  int ii,jj;
  int jdiv, jmod;
  static int M1[16][16];
  static int M4[4][4];
  static int M5[4],M6[4];
  static int M0[4][4][4][4];
  int run,scan_pos,coeff_ctr,level;
  int qp_per,qp_rem,q_bits;
  int ac_coef = 0;

  Macroblock *currMB = &img->mb_data[img->current_mb_nr];

  int   b8, b4;
  int*  DCLevel = img->cofDC[0][0];
  int*  DCRun   = img->cofDC[0][1];
  int*  ACLevel;
  int*  ACRun;
  int **levelscale,**leveloffset;
  int **invlevelscale;
  int   qp = currMB->qp + img->bitdepth_luma_qp_scale - MIN_QP;
  Boolean lossless_qpprime = (Boolean) ((qp == 0) && (img->lossless_qpprime_flag == 1));
  const byte (*pos_scan)[2] = currMB->is_field_mode ? FIELD_SCAN : SNGL_SCAN;

  // Note that we could just use currMB->qp here
  qp_per = qp_per_matrix[qp];
  qp_rem = qp_rem_matrix[qp];
  q_bits = Q_BITS + qp_per;

  // select scaling parameters
  levelscale    = ptLevelScale4x4Luma   [1][qp_rem];
  invlevelscale = ptInvLevelScale4x4Luma[1][qp_rem];
  leveloffset   = ptLevelOffset4x4Luma  [1][qp]; // note that we could always use "qp" here. will change it in the next commit

  for (j=0;j<16;j++)
  {
    jdiv = j >> 2;
    jmod = j & 0x03;
    jj = img->opix_y+j;
    for (i=0;i<16;i++)
    {
      M1[j][i] = imgY_org[jj][img->opix_x+i] - img->mprr_2[new_intra_mode][j][i];
      M0[jdiv][i >> 2][jmod][i & 0x03] = M1[j][i];
    }
  }

  if (!lossless_qpprime)
  {
    for (jj=0;jj<4;jj++)
    {
      for (ii=0;ii<4;ii++)
      {
        for (j=0;j<4;j++)
        {
          M5[0] = M0[jj][ii][j][0] + M0[jj][ii][j][3];
          M5[1] = M0[jj][ii][j][1] + M0[jj][ii][j][2];
          M5[2] = M0[jj][ii][j][1] - M0[jj][ii][j][2];
          M5[3] = M0[jj][ii][j][0] - M0[jj][ii][j][3];

          M4[j][0] = M5[0]   + M5[1];
          M4[j][2] = M5[0]   - M5[1];
          M4[j][1] = (M5[3] << 1) + M5[2];
          M4[j][3] = M5[3]   - (M5[2] << 1);
        }
        // vertical
        for (i=0;i<4;i++)
        {
          M5[0] = M4[0][i] + M4[3][i];
          M5[1] = M4[1][i] + M4[2][i];
          M5[2] = M4[1][i] - M4[2][i];
          M5[3] = M4[0][i] - M4[3][i];

          M0[jj][ii][0][i] =  M5[0]   + M5[1];
          M0[jj][ii][2][i] =  M5[0]   - M5[1];
          M0[jj][ii][1][i] = (M5[3] << 1) + M5[2];
          M0[jj][ii][3][i] =  M5[3]   - (M5[2] << 1);
        }
      }
    }

    // pick out DC coeff

    for (j=0;j<4;j++)
    {
      for (i=0;i<4;i++)
        M4[j][i]= M0[j][i][0][0];
    }

    for (j=0;j<4;j++)
    {
      M5[0] = M4[j][0]+M4[j][3];
      M5[1] = M4[j][1]+M4[j][2];
      M5[2] = M4[j][1]-M4[j][2];
      M5[3] = M4[j][0]-M4[j][3];

      M4[j][0] = M5[0]+M5[1];
      M4[j][2] = M5[0]-M5[1];
      M4[j][1] = M5[3]+M5[2];
      M4[j][3] = M5[3]-M5[2];
    }

    // vertical
    for (i=0;i<4;i++)
    {
      M5[0] = M4[0][i]+M4[3][i];
      M5[1] = M4[1][i]+M4[2][i];
      M5[2] = M4[1][i]-M4[2][i];
      M5[3] = M4[0][i]-M4[3][i];

      M4[0][i]=(M5[0]+M5[1])>>1;
      M4[2][i]=(M5[0]-M5[1])>>1;
      M4[1][i]=(M5[3]+M5[2])>>1;
      M4[3][i]=(M5[3]-M5[2])>>1;
    }

    // quant
    run=-1;
    scan_pos=0;

    for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)
    {
      i=pos_scan[coeff_ctr][0];
      j=pos_scan[coeff_ctr][1];

      run++;
      level= (iabs(M4[j][i]) * levelscale[0][0] + (leveloffset[0][0]<<1)) >> (q_bits+1);

      if (input->symbol_mode == UVLC && img->qp < 10)
      {
        if (level > CAVLC_LEVEL_LIMIT)
          level = CAVLC_LEVEL_LIMIT;
      }

      if (level != 0)
      {
        DCLevel[scan_pos] = isignab(level,M4[j][i]);
        DCRun  [scan_pos] = run;
        ++scan_pos;
        run=-1;
      }
      M4[j][i]=isignab(level,M4[j][i]);
    }
    DCLevel[scan_pos]=0;

    // inverse DC transform
    for (j=0;j<4;j++)
    {
      M6[0] = M4[j][0] + M4[j][2];
      M6[1] = M4[j][0] - M4[j][2];
      M6[2] = M4[j][1] - M4[j][3];
      M6[3] = M4[j][1] + M4[j][3];

      M4[j][0] = M6[0] + M6[3];
      M4[j][1] = M6[1] + M6[2];
      M4[j][2] = M6[1] - M6[2];
      M4[j][3] = M6[0] - M6[3];
    }

    for (i=0;i<4;i++)
    {

      M6[0] = M4[0][i] + M4[2][i];
      M6[1] = M4[0][i] - M4[2][i];
      M6[2] = M4[1][i] - M4[3][i];
      M6[3] = M4[1][i] + M4[3][i];

      M0[0][i][0][0] = rshift_rnd_sf(((M6[0]+M6[3])*invlevelscale[0][0])<<qp_per,6);
      M0[1][i][0][0] = rshift_rnd_sf(((M6[1]+M6[2])*invlevelscale[0][0])<<qp_per,6);
      M0[2][i][0][0] = rshift_rnd_sf(((M6[1]-M6[2])*invlevelscale[0][0])<<qp_per,6);
      M0[3][i][0][0] = rshift_rnd_sf(((M6[0]-M6[3])*invlevelscale[0][0])<<qp_per,6);
    }
  }
  else  // lossless_qpprime
  {

    // pick out DC coeff
    for (j=0;j<4;j++)
    {
      for (i=0;i<4;i++)
        M4[j][i]= M0[j][i][0][0];
    }

    run=-1;
    scan_pos=0;

    for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)
    {
      i=pos_scan[coeff_ctr][0];
      j=pos_scan[coeff_ctr][1];

      run++;

      level= iabs(M4[j][i]);

      if (input->symbol_mode == UVLC && img->qp < 10 && level > CAVLC_LEVEL_LIMIT)
        level = CAVLC_LEVEL_LIMIT;

      if (level != 0)
      {
        DCLevel[scan_pos] = isignab(level,M4[j][i]);
        DCRun  [scan_pos] = run;
        ++scan_pos;
        run=-1;
      }
    }
    DCLevel[scan_pos]=0;
  }

  // AC inverse trans/quant for MB
  for (jj=0;jj<4;jj++)
  {
    for (ii=0;ii<4;ii++)
    {
      for (j=0;j<4;j++)
      {
        memcpy(M4[j],M0[jj][ii][j], BLOCK_SIZE * sizeof(int));
      }

      run      = -1;
      scan_pos =  0;
      b8       = 2*(jj >> 1) + (ii >> 1);
      b4       = 2*(jj & 0x01) + (ii & 0x01);
      ACLevel  = img->cofAC [b8][b4][0];
      ACRun    = img->cofAC [b8][b4][1];

      if(!lossless_qpprime)
      {
        for (coeff_ctr=1;coeff_ctr<16;coeff_ctr++) // set in AC coeff
        {

          i=pos_scan[coeff_ctr][0];
          j=pos_scan[coeff_ctr][1];

          run++;
          level= ( iabs( M4[j][i]) * levelscale[j][i] + leveloffset[j][i]) >> q_bits;

          if (img->AdaptiveRounding)
          {
            img->fadjust4x4[2][jj*BLOCK_SIZE+j][ii*BLOCK_SIZE+i] = (level == 0) ? 0
              : rshift_rnd_sf((AdaptRndWeight * (iabs(M4[j][i]) * levelscale[j][i] - (level << q_bits))),(q_bits + 1));
          }

          if (level != 0)
          {
            ac_coef = 15;
            ACLevel[scan_pos] = isignab(level,M4[j][i]);
            ACRun  [scan_pos] = run;
            ++scan_pos;
            run=-1;
          }

          level=isignab(level, M4[j][i]);

          M4[j][i]=rshift_rnd_sf((level*invlevelscale[j][i])<<qp_per, 4);
        }

        ACLevel[scan_pos] = 0;

        // IDCT horizontal
        for (j=0;j<4 ;j++)
        {
          M6[0] = M4[j][0]     +  M4[j][2];
          M6[1] = M4[j][0]     -  M4[j][2];
          M6[2] =(M4[j][1]>>1) -  M4[j][3];
          M6[3] = M4[j][1]     + (M4[j][3]>>1);

          M4[j][0] = M6[0] + M6[3];
          M4[j][1] = M6[1] + M6[2];
          M4[j][2] = M6[1] - M6[2];
          M4[j][3] = M6[0] - M6[3];
        }

        // vertical
        for (i=0;i<4;i++)
        {
          M6[0]= M4[0][i]     +  M4[2][i];
          M6[1]= M4[0][i]     -  M4[2][i];
          M6[2]=(M4[1][i]>>1) -  M4[3][i];
          M6[3]= M4[1][i]     + (M4[3][i]>>1);

          M0[jj][ii][0][i] = M6[0] + M6[3];
          M0[jj][ii][1][i] = M6[1] + M6[2];
          M0[jj][ii][2][i] = M6[1] - M6[2];
          M0[jj][ii][3][i] = M6[0] - M6[3];
        }
      }
      else  // Lossless qpprime code
      {
        for (coeff_ctr=1;coeff_ctr<16;coeff_ctr++) // set in AC coeff
        {

          i=pos_scan[coeff_ctr][0];
          j=pos_scan[coeff_ctr][1];

          run++;

          level= iabs( M4[j][i]);

          if (level != 0)
          {
            ac_coef = 15;
            ACLevel[scan_pos] = isignab(level,M4[j][i]);
            ACRun  [scan_pos] = run;
            ++scan_pos;
            run=-1;
          }
          // set adaptive rounding params to 0 since process is not meaningful here.
          if (img->AdaptiveRounding)
          {
            img->fadjust4x4[2][jj*BLOCK_SIZE+j][ii*BLOCK_SIZE+i] = 0;
          }
        }
        ACLevel[scan_pos] = 0;
      }
    }
  }

  for (jj=0;jj<BLOCK_MULTIPLE; jj++)
  {
    for (ii=0;ii<BLOCK_MULTIPLE; ii++)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -