⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 symmetricaluncertattributeseteval.java

📁 这是关于数据挖掘的一些算法
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
      if (inst.isMissing(m_classIndex)) {        jj = nj - 1;      }      else {        jj = (int)inst.value(m_classIndex);      }      counts[ii][jj]++;    }    // get the row totals    for (i = 0; i < ni; i++) {      sumi[i] = 0.0;      for (j = 0; j < nj; j++) {        //there are how many happen of a special feature value        sumi[i] += counts[i][j];        sum += counts[i][j];      }    }    // get the column totals    for (j = 0; j < nj; j++) {      sumj[j] = 0.0;      for (i = 0; i < ni; i++) {        //a class value include how many instance.        sumj[j] += counts[i][j];      }    }    // distribute missing counts    if (m_missing_merge &&        (sumi[ni-1] < m_numInstances) &&        (sumj[nj-1] < m_numInstances)) {      double[] i_copy = new double[sumi.length];      double[] j_copy = new double[sumj.length];      double[][] counts_copy = new double[sumi.length][sumj.length];      for (i = 0; i < ni; i++) {        System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length);      }      System.arraycopy(sumi, 0, i_copy, 0, sumi.length);      System.arraycopy(sumj, 0, j_copy, 0, sumj.length);      double total_missing = (sumi[ni - 1] + sumj[nj - 1]                              - counts[ni - 1][nj - 1]);      // do the missing i's      if (sumi[ni - 1] > 0.0) { //sumi[ni - 1]: missing value contains how many values.        for (j = 0; j < nj - 1; j++) {          if (counts[ni - 1][j] > 0.0) {            for (i = 0; i < ni - 1; i++) {              temp = ((i_copy[i]/(sum - i_copy[ni - 1])) *                      counts[ni - 1][j]);              counts[i][j] += temp; //according to the probability of value i we distribute account of the missing degree of a class lable to it              sumi[i] += temp;            }            counts[ni - 1][j] = 0.0;          }        }      }      sumi[ni - 1] = 0.0;      // do the missing j's      if (sumj[nj - 1] > 0.0) {        for (i = 0; i < ni - 1; i++) {          if (counts[i][nj - 1] > 0.0) {            for (j = 0; j < nj - 1; j++) {              temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]);              counts[i][j] += temp;              sumj[j] += temp;            }            counts[i][nj - 1] = 0.0;          }        }      }      sumj[nj - 1] = 0.0;      // do the both missing      if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) {        for (i = 0; i < ni - 1; i++) {          for (j = 0; j < nj - 1; j++) {            temp = (counts_copy[i][j]/(sum - total_missing)) *              counts_copy[ni - 1][nj - 1];            counts[i][j] += temp;            sumi[i] += temp;            sumj[j] += temp;          }        }        counts[ni - 1][nj - 1] = 0.0;      }    }    return  ContingencyTables.symmetricalUncertainty(counts);  }  /**   * calculate symmetrical uncertainty between sets of attributes   *   * @param attributes the indexes of the attributes   * @param classAttributes the indexes of the attributes whose combination will   *                         be used as class label   * @return the uncertainty   * @throws Exception if the attribute could not be evaluated   */  public double evaluateAttribute (int[] attributes, int[] classAttributes)    throws Exception {    int i, j;     //variable for looping.    int p;     //variable for looping.    int ii, jj;   //specifying the position in the contingency table.    int nnj, nni; //counting base for attributes[].    int ni, nj;   //the nubmer of rows and columns in the ContingencyTables.    double sum = 0.0;    boolean b_missing_attribute = false;    boolean b_missing_classAtrribute = false;    if(attributes.length==0)    {      throw new Exception("the parameter attributes[] is empty;SEQ:W-FS-Eval-SUAS-001");    }    if(classAttributes.length==0)    {      throw new Exception("the parameter classAttributes[] is empty;SEQ:W-FS-Eval-SUAS-002");    }    /*calculate the number of the rows in ContingencyTable*/    ni = m_trainInstances.attribute(attributes[0]).numValues();    if (ni == 0)    {      throw new Exception("an attribute is empty;SEQ:W-FS-Eval-SUAS-003;"+1);    }    for (i = 1;i<attributes.length;i++)    {      if (m_trainInstances.attribute(attributes[i]).numValues() == 0)      {        throw new Exception("an attribute is empty;SEQ:W-FS-Eval-SUAS-003;" +                            (i+1));      }      ni = ni*m_trainInstances.attribute(attributes[i]).numValues();    }    ni = ni+1;    /*calculate the number of the colums in the ContingencyTable*/    nj = m_trainInstances.attribute(classAttributes[0]).numValues();    if (nj == 0)    {      throw new Exception("the a classAttribute is empty;SEQ:W-FS-Eval-SUAS-004;"+1);    }    for (i = 1;i<classAttributes.length;i++)    {      if (m_trainInstances.attribute(classAttributes[i]).numValues() == 0)      {        throw new Exception("the a classAttribute is empty;SEQ:W-FS-Eval-SUAS-004;" +                            (i+1));      }      nj = nj*m_trainInstances.attribute(classAttributes[i]).numValues();    }    nj = nj+1;    double[] sumi, sumj;    Instance inst;    double temp = 0.0;    sumi = new double[ni];    sumj = new double[nj];    double[][] counts = new double[ni][nj];    sumi = new double[ni];    sumj = new double[nj];    for (i = 0; i < ni; i++) {      sumi[i] = 0.0;      for (j = 0; j < nj; j++) {        sumj[j] = 0.0;        counts[i][j] = 0.0;      }    }    // Fill the contingency table    for (i = 0; i < m_numInstances; i++) {      inst = m_trainInstances.instance(i);      b_missing_attribute = false;      b_missing_classAtrribute = false;      /*get row position in contingency table*/      nni = 1;      ii = 0;      for (p=attributes.length-1; p>=0; p--)      {        if (inst.isMissing(attributes[p])) {           b_missing_attribute = true;        }        ii = ((int)inst.value(attributes[p])*nni)+ii;        if (p<attributes.length-1){          nni = nni * (m_trainInstances.attribute(attributes[p]).numValues());        }        else {          nni = m_trainInstances.attribute(attributes[p]).numValues();        }      }      if (b_missing_attribute) {        ii = ni-1;      }      /*get colum position in contingency table*/      nnj = 1;      jj = 0;      for (p=classAttributes.length-1; p>=0; p--)      {        if (inst.isMissing(classAttributes[p])) {           b_missing_classAtrribute = true;        }        jj = ((int)inst.value(classAttributes[p])*nnj)+jj;        if (p<attributes.length-1){          nnj = nnj * (m_trainInstances.attribute(classAttributes[p]).numValues());        }        else {          nnj = m_trainInstances.attribute(classAttributes[p]).numValues();        }      }      if (b_missing_classAtrribute) {        jj = nj-1;      }      counts[ii][jj]++;    }    // get the row totals    for (i = 0; i < ni; i++) {      sumi[i] = 0.0;      for (j = 0; j < nj; j++) {        //there are how many happen of a special feature value        sumi[i] += counts[i][j];        sum += counts[i][j];      }    }    // get the column totals    for (j = 0; j < nj; j++) {      sumj[j] = 0.0;      for (i = 0; i < ni; i++) {        //a class value include how many instance.        sumj[j] += counts[i][j];      }    }    // distribute missing counts    if (m_missing_merge &&        (sumi[ni-1] < m_numInstances) &&        (sumj[nj-1] < m_numInstances)) {      double[] i_copy = new double[sumi.length];      double[] j_copy = new double[sumj.length];      double[][] counts_copy = new double[sumi.length][sumj.length];      for (i = 0; i < ni; i++) {        System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length);      }      System.arraycopy(sumi, 0, i_copy, 0, sumi.length);      System.arraycopy(sumj, 0, j_copy, 0, sumj.length);      double total_missing = (sumi[ni - 1] + sumj[nj - 1]                              - counts[ni - 1][nj - 1]);      // do the missing i's      if (sumi[ni - 1] > 0.0) { //sumi[ni - 1]: missing value contains how many values.        for (j = 0; j < nj - 1; j++) {          if (counts[ni - 1][j] > 0.0) {            for (i = 0; i < ni - 1; i++) {              temp = ((i_copy[i]/(sum - i_copy[ni - 1])) *                      counts[ni - 1][j]);              counts[i][j] += temp; //according to the probability of value i we distribute account of the missing degree of a class lable to it              sumi[i] += temp;            }            counts[ni - 1][j] = 0.0;          }        }      }      sumi[ni - 1] = 0.0;      // do the missing j's      if (sumj[nj - 1] > 0.0) {        for (i = 0; i < ni - 1; i++) {          if (counts[i][nj - 1] > 0.0) {            for (j = 0; j < nj - 1; j++) {              temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]);              counts[i][j] += temp;              sumj[j] += temp;            }            counts[i][nj - 1] = 0.0;          }        }      }      sumj[nj - 1] = 0.0;      // do the both missing      if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) {        for (i = 0; i < ni - 1; i++) {          for (j = 0; j < nj - 1; j++) {            temp = (counts_copy[i][j]/(sum - total_missing)) *              counts_copy[ni - 1][nj - 1];            counts[i][j] += temp;            sumi[i] += temp;            sumj[j] += temp;          }        }        counts[ni - 1][nj - 1] = 0.0;      }    }    return  ContingencyTables.symmetricalUncertainty(counts);  }  /**   * Return a description of the evaluator   * @return description as a string   */  public String toString () {    StringBuffer text = new StringBuffer();    if (m_trainInstances == null) {      text.append("\tSymmetrical Uncertainty evaluator has not been built");    }    else {      text.append("\tSymmetrical Uncertainty Ranking Filter");      if (!m_missing_merge) {        text.append("\n\tMissing values treated as seperate");      }    }    text.append("\n");    return  text.toString();  }  // ============  // Test method.  // ============  /**   * Main method for testing this class.   *   * @param argv should contain the following arguments:   * -t training file   */  public static void main (String[] argv) {    runEvaluator(new SymmetricalUncertAttributeSetEval(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -