📄 symmetricaluncertattributeseteval.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * RELEASE INFORMATION (December 27, 2004) * * FCBF algorithm: * Template obtained from Weka * Developed for Weka by Zheng Alan Zhao * December 27, 2004 * * FCBF algorithm is a feature selection method based on Symmetrical Uncertainty Measurement for * relevance redundancy analysis. The details of FCBF algorithm are in: * <!-- technical-plaintext-start --> * Lei Yu, Huan Liu: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In: Proceedings of the Twentieth International Conference on Machine Learning, 856-863, 2003. <!-- technical-plaintext-end --> * * * * CONTACT INFORMATION * * For algorithm implementation: * Zheng Zhao: zhaozheng at asu.edu * * For the algorithm: * Lei Yu: leiyu at asu.edu * Huan Liu: hliu at asu.edu * * Data Mining and Machine Learning Lab * Computer Science and Engineering Department * Fulton School of Engineering * Arizona State University * Tempe, AZ 85287 * * SymmetricalUncertAttributeSetEval.java * * Copyright (C) 2004 Data Mining and Machine Learning Lab, * Computer Science and Engineering Department, * Fulton School of Engineering, * Arizona State University * */package weka.attributeSelection;import weka.core.Capabilities;import weka.core.ContingencyTables;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import weka.filters.Filter;import weka.filters.supervised.attribute.Discretize;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * SymmetricalUncertAttributeSetEval :<br/> * <br/> * Evaluates the worth of a set attributes by measuring the symmetrical uncertainty with respect to another set of attributes. <br/> * <br/> * SymmU(AttributeSet2, AttributeSet1) = 2 * (H(AttributeSet2) - H(AttributeSet1 | AttributeSet2)) / H(AttributeSet2) + H(AttributeSet1).<br/> * <br/> * For more information see:<br/> * <br/> * Lei Yu, Huan Liu: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In: Proceedings of the Twentieth International Conference on Machine Learning, 856-863, 2003. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Yu2003, * author = {Lei Yu and Huan Liu}, * booktitle = {Proceedings of the Twentieth International Conference on Machine Learning}, * pages = {856-863}, * publisher = {AAAI Press}, * title = {Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution}, * year = {2003} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -M * treat missing values as a seperate value.</pre> * <!-- options-end --> * * @author Zheng Zhao: zhaozheng at asu.edu * @version $Revision: 1.6 $ * @see Discretize */public class SymmetricalUncertAttributeSetEval extends AttributeSetEvaluator implements OptionHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 8351377335495873202L; /** The training instances */ private Instances m_trainInstances; /** The class index */ private int m_classIndex; /** The number of attributes */ private int m_numAttribs; /** The number of instances */ private int m_numInstances; /** The number of classes */ private int m_numClasses; /** Treat missing values as a seperate value */ private boolean m_missing_merge; /** * Returns a string describing this attribute evaluator * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "SymmetricalUncertAttributeSetEval :\n\nEvaluates the worth of a set attributes " +"by measuring the symmetrical uncertainty with respect to another set of attributes. " +"\n\n SymmU(AttributeSet2, AttributeSet1) = 2 * (H(AttributeSet2) - H(AttributeSet1 | AttributeSet2)) " +"/ H(AttributeSet2) + H(AttributeSet1).\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Lei Yu and Huan Liu"); result.setValue(Field.TITLE, "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution"); result.setValue(Field.BOOKTITLE, "Proceedings of the Twentieth International Conference on Machine Learning"); result.setValue(Field.YEAR, "2003"); result.setValue(Field.PAGES, "856-863"); result.setValue(Field.PUBLISHER, "AAAI Press"); return result; } /** * Constructor */ public SymmetricalUncertAttributeSetEval () { resetOptions(); } /** * Returns an enumeration describing the available options. * @return an enumeration of all the available options. **/ public Enumeration listOptions () { Vector newVector = new Vector(1); newVector.addElement(new Option("\ttreat missing values as a seperate " + "value.", "M", 0, "-M")); return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -M * treat missing values as a seperate value.</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions (String[] options) throws Exception { resetOptions(); setMissingMerge(!(Utils.getFlag('M', options))); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String missingMergeTipText() { return "Distribute counts for missing values. Counts are distributed " +"across other values in proportion to their frequency. Otherwise, " +"missing is treated as a separate value."; } /** * distribute the counts for missing values across observed values * * @param b true=distribute missing values. */ public void setMissingMerge (boolean b) { m_missing_merge = b; } /** * get whether missing values are being distributed or not * * @return true if missing values are being distributed. */ public boolean getMissingMerge () { return m_missing_merge; } /** * Gets the current settings of WrapperSubsetEval. * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] options = new String[1]; int current = 0; if (!getMissingMerge()) { options[current++] = "-M"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the capabilities of this evaluator. * * @return the capabilities of this evaluator * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Initializes a symmetrical uncertainty attribute evaluator. * Discretizes all attributes that are numeric. * * @param data set of instances serving as training data * @throws Exception if the evaluator has not been * generated successfully */ public void buildEvaluator (Instances data) throws Exception { // can evaluator handle data? getCapabilities().testWithFail(data); m_trainInstances = data; m_classIndex = m_trainInstances.classIndex(); m_numAttribs = m_trainInstances.numAttributes(); m_numInstances = m_trainInstances.numInstances(); Discretize disTransform = new Discretize(); disTransform.setUseBetterEncoding(true); disTransform.setInputFormat(m_trainInstances); m_trainInstances = Filter.useFilter(m_trainInstances, disTransform); m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); } /** * set options to default values */ protected void resetOptions () { m_trainInstances = null; m_missing_merge = true; } /** * evaluates an individual attribute by measuring the symmetrical * uncertainty between it and the class. * * @param attribute the index of the attribute to be evaluated * @return the uncertainty * @throws Exception if the attribute could not be evaluated */ public double evaluateAttribute (int attribute) throws Exception { int i, j, ii, jj; int ni, nj; double sum = 0.0; ni = m_trainInstances.attribute(attribute).numValues() + 1; nj = m_numClasses + 1; double[] sumi, sumj; Instance inst; double temp = 0.0; sumi = new double[ni]; sumj = new double[nj]; double[][] counts = new double[ni][nj]; sumi = new double[ni]; sumj = new double[nj]; for (i = 0; i < ni; i++) { sumi[i] = 0.0; for (j = 0; j < nj; j++) { sumj[j] = 0.0; counts[i][j] = 0.0; } } // Fill the contingency table for (i = 0; i < m_numInstances; i++) { inst = m_trainInstances.instance(i); if (inst.isMissing(attribute)) { ii = ni - 1; } else { ii = (int)inst.value(attribute); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -