⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 racesearch.java

📁 这是关于数据挖掘的一些算法
💻 JAVA
📖 第 1 页 / 共 5 页
字号:
   */  public void setSignificanceLevel(double sig) {    m_sigLevel = sig;  }  /**   * Get the significance level   * @return the current significance level   */  public double getSignificanceLevel() {    return m_sigLevel;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String thresholdTipText() {    return "Set the error threshold by which to consider two subsets "      +"equivalent.";  }  /**   * Sets the threshold for comparisons   * @param t the threshold to use   */  public void setThreshold(double t) {    m_delta = t;  }  /**   * Get the threshold   * @return the current threshold   */  public double getThreshold() {    return m_delta;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String foldsTypeTipText() {    return "Set the number of folds to use for x-val error estimation; "      +"leave-one-out is selected automatically for schemata search.";  }  /**   * Set the xfold type   *   * @param d the type of xval   */  public void setFoldsType (SelectedTag d) {        if (d.getTags() == XVALTAGS_SELECTION) {      m_xvalType = d.getSelectedTag().getID();    }  }  /**   * Get the xfold type   *   * @return the type of xval   */  public SelectedTag getFoldsType () {    return new SelectedTag(m_xvalType, XVALTAGS_SELECTION);  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String debugTipText() {    return "Turn on verbose output for monitoring the search's progress.";  }  /**   * Set whether verbose output should be generated.   * @param d true if output is to be verbose.   */  public void setDebug(boolean d) {    m_debug = d;  }  /**   * Get whether output is to be verbose   * @return true if output will be verbose   */  public boolean getDebug() {    return m_debug;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String attributeEvaluatorTipText() {    return "Attribute evaluator to use for generating an initial ranking. "      +"Use in conjunction with a rank race";      }  /**   * Set the attribute evaluator to use for generating the ranking.   * @param newEvaluator the attribute evaluator to use.   */  public void setAttributeEvaluator(ASEvaluation newEvaluator) {    m_ASEval = newEvaluator;  }  /**   * Get the attribute evaluator used to generate the ranking.   * @return the evaluator used to generate the ranking.   */  public ASEvaluation getAttributeEvaluator() {    return m_ASEval;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String generateRankingTipText() {    return "Use the racing process to generate a ranked list of attributes. "      +"Using this mode forces the race to be a forward type and then races "      +"until all attributes have been added, thus giving a ranked list";  }    /**   * Records whether the user has requested a ranked list of attributes.   * @param doRank true if ranking is requested   */  public void setGenerateRanking(boolean doRank) {    m_rankingRequested = doRank;    if (m_rankingRequested) {      try {        setRaceType(new SelectedTag(FORWARD_RACE,                                    TAGS_SELECTION));      } catch (Exception ex) {      }    }  }  /**   * Gets whether ranking has been requested. This is used by the   * AttributeSelection module to determine if rankedAttributes()   * should be called.   * @return true if ranking has been requested.   */  public boolean getGenerateRanking() {    return m_rankingRequested;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String numToSelectTipText() {    return "Specify the number of attributes to retain. Use in conjunction "      +"with generateRanking. The default value "      +"(-1) indicates that all attributes are to be retained. Use either "      +"this option or a threshold to reduce the attribute set.";  }  /**   * Specify the number of attributes to select from the ranked list   * (if generating a ranking). -1   * indicates that all attributes are to be retained.   * @param n the number of attributes to retain   */  public void setNumToSelect(int n) {    m_numToSelect = n;  }  /**   * Gets the number of attributes to be retained.   * @return the number of attributes to retain   */  public int getNumToSelect() {    return m_numToSelect;  }  /**   * Gets the calculated number of attributes to retain. This is the   * actual number of attributes to retain. This is the same as   * getNumToSelect if the user specifies a number which is not less   * than zero. Otherwise it should be the number of attributes in the   * (potentially transformed) data.   */  public int getCalculatedNumToSelect() {    if (m_numToSelect >= 0) {      m_calculatedNumToSelect = m_numToSelect;    }    return m_calculatedNumToSelect;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String selectionThresholdTipText() {    return "Set threshold by which attributes can be discarded. Default value "      + "results in no attributes being discarded. Use in conjunction with "      + "generateRanking";  }  /**   * Set the threshold by which the AttributeSelection module can discard   * attributes.   * @param threshold the threshold.   */  public void setSelectionThreshold(double threshold) {    m_threshold = threshold;  }  /**   * Returns the threshold so that the AttributeSelection module can   * discard attributes from the ranking.   */  public double getSelectionThreshold() {    return m_threshold;  }  /**   * Returns an enumeration describing the available options.   * @return an enumeration of all the available options.   **/  public Enumeration listOptions () {    Vector newVector = new Vector();         newVector.addElement(new Option(	 "\tType of race to perform.\n"	 + "\t(default = 0).",	 "R", 1 ,"-R <0 = forward | 1 = backward race | 2 = schemata | 3 = rank>"));          newVector.addElement(new Option(	 "\tSignificance level for comaparisons\n"	 + "\t(default = 0.001(forward/backward/rank)/0.01(schemata)).",	 "L",1,"-L <significance>"));          newVector.addElement(new Option(	 "\tThreshold for error comparison.\n"	 + "\t(default = 0.001).",	 "T",1,"-T <threshold>"));          newVector.addElement(new Option(	 "\tAttribute ranker to use if doing a \n"	 + "\trank search. Place any\n"	 + "\tevaluator options LAST on \n"	 + "\tthe command line following a \"--\".\n" 	 + "\teg. -A weka.attributeSelection.GainRatioAttributeEval ... -- -M.\n"	 + "\t(default = GainRatioAttributeEval)", 	 "A", 1, "-A <attribute evaluator>"));         newVector.addElement(new Option(	 "\tFolds for cross validation\n"	 + "\t(default = 0 (1 if schemata race)",	 "F",1,"-F <0 = 10 fold | 1 = leave-one-out>"));          newVector.addElement(new Option(	 "\tGenerate a ranked list of attributes.\n"	 +"\tForces the search to be forward\n"	 +"\tand races until all attributes have\n"	 +"\tselected, thus producing a ranking.",	 "Q",0,"-Q"));    newVector.addElement(new Option(	"\tSpecify number of attributes to retain from \n"	+ "\tthe ranking. Overides -T. Use in conjunction with -Q", 	"N", 1, "-N <num to select>"));    newVector.addElement(new Option(	"\tSpecify a theshold by which attributes\n" 	+ "\tmay be discarded from the ranking.\n"	+"\tUse in conjuction with -Q",	"J",1, "-J <threshold>"));     newVector.addElement(new Option(	 "\tVerbose output for monitoring the search.",	 "Z",0,"-Z"));          if ((m_ASEval != null) &&          (m_ASEval instanceof OptionHandler)) {       newVector.addElement(new Option(	   "", 	   "", 0, "\nOptions specific to evaluator " 	   + m_ASEval.getClass().getName() + ":"));       Enumeration enu = ((OptionHandler)m_ASEval).listOptions();       while (enu.hasMoreElements()) {         newVector.addElement(enu.nextElement());       }     }          return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -R &lt;0 = forward | 1 = backward race | 2 = schemata | 3 = rank&gt;   *  Type of race to perform.   *  (default = 0).</pre>   *    * <pre> -L &lt;significance&gt;   *  Significance level for comaparisons   *  (default = 0.001(forward/backward/rank)/0.01(schemata)).</pre>   *    * <pre> -T &lt;threshold&gt;   *  Threshold for error comparison.   *  (default = 0.001).</pre>   *    * <pre> -A &lt;attribute evaluator&gt;   *  Attribute ranker to use if doing a    *  rank search. Place any   *  evaluator options LAST on    *  the command line following a "--".   *  eg. -A weka.attributeSelection.GainRatioAttributeEval ... -- -M.   *  (default = GainRatioAttributeEval)</pre>   *    * <pre> -F &lt;0 = 10 fold | 1 = leave-one-out&gt;   *  Folds for cross validation   *  (default = 0 (1 if schemata race)</pre>   *    * <pre> -Q   *  Generate a ranked list of attributes.   *  Forces the search to be forward   *  and races until all attributes have   *  selected, thus producing a ranking.</pre>   *    * <pre> -N &lt;num to select&gt;   *  Specify number of attributes to retain from    *  the ranking. Overides -T. Use in conjunction with -Q</pre>   *    * <pre> -J &lt;threshold&gt;   *  Specify a theshold by which attributes   *  may be discarded from the ranking.   *  Use in conjuction with -Q</pre>   *    * <pre> -Z   *  Verbose output for monitoring the search.</pre>   *    * <pre>    * Options specific to evaluator weka.attributeSelection.GainRatioAttributeEval:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -