📄 randomsearch.java
字号:
* @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String verboseTipText() { return "Print progress information. Sends progress info to the terminal " +"as the search progresses."; } /** * set whether or not to output new best subsets as the search proceeds * @param v true if output is to be verbose */ public void setVerbose(boolean v) { m_verbose = v; } /** * get whether or not output is verbose * @return true if output is set to verbose */ public boolean getVerbose() { return m_verbose; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String searchPercentTipText() { return "Percentage of the search space to explore."; } /** * set the percentage of the search space to consider * @param p percent of the search space ( 0 < p <= 100) */ public void setSearchPercent(double p) { p = Math.abs(p); if (p == 0) { p = 25; } if (p > 100.0) { p = 100; } m_searchSize = (p/100.0); } /** * get the percentage of the search space to consider * @return the percent of the search space explored */ public double getSearchPercent() { return m_searchSize * 100; } /** * converts the array of starting attributes to a string. This is * used by getOptions to return the actual attributes specified * as the starting set. This is better than using m_startRanges.getRanges() * as the same start set can be specified in different ways from the * command line---eg 1,2,3 == 1-3. This is to ensure that stuff that * is stored in a database is comparable. * @return a comma seperated list of individual attribute numbers as a String */ private String startSetToString() { StringBuffer FString = new StringBuffer(); boolean didPrint; if (m_starting == null) { return getStartSet(); } for (int i = 0; i < m_starting.length; i++) { didPrint = false; if ((m_hasClass == false) || (m_hasClass == true && i != m_classIndex)) { FString.append((m_starting[i] + 1)); didPrint = true; } if (i == (m_starting.length - 1)) { FString.append(""); } else { if (didPrint) { FString.append(","); } } } return FString.toString(); } /** * prints a description of the search * @return a description of the search as a string */ public String toString() { StringBuffer text = new StringBuffer(); text.append("\tRandom search.\n\tStart set: "); if (m_starting == null) { text.append("no attributes\n"); } else { text.append(startSetToString()+"\n"); } text.append("\tNumber of iterations: "+m_iterations+" (" +(m_searchSize * 100.0)+"% of the search space)\n"); text.append("\tMerit of best subset found: " +Utils.doubleToString(Math.abs(m_bestMerit),8,3)+"\n"); return text.toString(); } /** * Searches the attribute subset space randomly. * * @param ASEval the attribute evaluator to guide the search * @param data the training instances. * @return an array (not necessarily ordered) of selected attribute indexes * @throws Exception if the search can't be completed */ public int[] search (ASEvaluation ASEval, Instances data) throws Exception { double best_merit; int sizeOfBest = m_numAttribs; BitSet temp; m_bestGroup = new BitSet(m_numAttribs); m_onlyConsiderBetterAndSmaller = false; if (!(ASEval instanceof SubsetEvaluator)) { throw new Exception(ASEval.getClass().getName() + " is not a " + "Subset evaluator!"); } m_random = new Random(m_seed); if (ASEval instanceof UnsupervisedSubsetEvaluator) { m_hasClass = false; } else { m_hasClass = true; m_classIndex = data.classIndex(); } SubsetEvaluator ASEvaluator = (SubsetEvaluator)ASEval; m_numAttribs = data.numAttributes(); m_startRange.setUpper(m_numAttribs-1); if (!(getStartSet().equals(""))) { m_starting = m_startRange.getSelection(); } // If a starting subset has been supplied, then initialise the bitset if (m_starting != null) { for (int i = 0; i < m_starting.length; i++) { if ((m_starting[i]) != m_classIndex) { m_bestGroup.set(m_starting[i]); } } m_onlyConsiderBetterAndSmaller = true; best_merit = ASEvaluator.evaluateSubset(m_bestGroup); sizeOfBest = countFeatures(m_bestGroup); } else { // do initial random subset m_bestGroup = generateRandomSubset(); best_merit = ASEvaluator.evaluateSubset(m_bestGroup); } if (m_verbose) { System.out.println("Initial subset (" +Utils.doubleToString(Math. abs(best_merit),8,5) +"): "+printSubset(m_bestGroup)); } int i; if (m_hasClass) { i = m_numAttribs -1; } else { i = m_numAttribs; } m_iterations = (int)((m_searchSize * Math.pow(2, i))); int tempSize; double tempMerit; // main loop for (i=0;i<m_iterations;i++) { temp = generateRandomSubset(); if (m_onlyConsiderBetterAndSmaller) { tempSize = countFeatures(temp); if (tempSize <= sizeOfBest) { tempMerit = ASEvaluator.evaluateSubset(temp); if (tempMerit >= best_merit) { sizeOfBest = tempSize; m_bestGroup = temp; best_merit = tempMerit; if (m_verbose) { System.out.print("New best subset (" +Utils.doubleToString(Math. abs(best_merit),8,5) +"): "+printSubset(m_bestGroup) + " :"); System.out.println(Utils. doubleToString((((double)i)/ ((double)m_iterations)* 100.0),5,1) +"% done"); } } } } else { tempMerit = ASEvaluator.evaluateSubset(temp); if (tempMerit > best_merit) { m_bestGroup = temp; best_merit = tempMerit; if (m_verbose) { System.out.print("New best subset (" +Utils.doubleToString(Math.abs(best_merit),8,5) +"): "+printSubset(m_bestGroup) + " :"); System.out.println(Utils. doubleToString((((double)i)/ ((double)m_iterations) *100.0),5,1) +"% done"); } } } } m_bestMerit = best_merit; return attributeList(m_bestGroup); } /** * prints a subset as a series of attribute numbers * @param temp the subset to print * @return a subset as a String of attribute numbers */ private String printSubset(BitSet temp) { StringBuffer text = new StringBuffer(); for (int j=0;j<m_numAttribs;j++) { if (temp.get(j)) { text.append((j+1)+" "); } } return text.toString(); } /** * converts a BitSet into a list of attribute indexes * @param group the BitSet to convert * @return an array of attribute indexes **/ private int[] attributeList (BitSet group) { int count = 0; // count how many were selected for (int i = 0; i < m_numAttribs; i++) { if (group.get(i)) { count++; } } int[] list = new int[count]; count = 0; for (int i = 0; i < m_numAttribs; i++) { if (group.get(i)) { list[count++] = i; } } return list; } /** * generates a random subset * @return a random subset as a BitSet */ private BitSet generateRandomSubset() { BitSet temp = new BitSet(m_numAttribs); double r; for (int i=0;i<m_numAttribs;i++) { r = m_random.nextDouble(); if (r <= 0.5) { if (m_hasClass && i == m_classIndex) { } else { temp.set(i); } } } return temp; } /** * counts the number of features in a subset * @param featureSet the feature set for which to count the features * @return the number of features in the subset */ private int countFeatures(BitSet featureSet) { int count = 0; for (int i=0;i<m_numAttribs;i++) { if (featureSet.get(i)) { count++; } } return count; } /** * resets to defaults */ private void resetOptions() { m_starting = null; m_startRange = new Range(); m_searchSize = 0.25; m_seed = 1; m_onlyConsiderBetterAndSmaller = false; m_verbose = false; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -