⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 checkattributeselection.java

📁 这是关于数据挖掘的一些算法
💻 JAVA
📖 第 1 页 / 共 4 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * CheckAttributeSelection.java * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand * */package weka.attributeSelection;import weka.core.Attribute;import weka.core.CheckScheme;import weka.core.FastVector;import weka.core.Instances;import weka.core.MultiInstanceCapabilitiesHandler;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SerializationHelper;import weka.core.SerializedObject;import weka.core.TestInstances;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** * Class for examining the capabilities and finding problems with  * attribute selection schemes. If you implement an attribute selection using  * the WEKA.libraries, you should run the checks on it to ensure robustness  * and correct operation. Passing all the tests of this object does not mean * bugs in the attribute selection don't exist, but this will help find some * common ones. <p/> *  * Typical usage: <p/> * <code>java weka.attributeSelection.CheckAttributeSelection -W ASscheme_name  * -- ASscheme_options </code><p/> *  * CheckAttributeSelection reports on the following: * <ul> *    <li> Scheme abilities  *      <ul> *         <li> Possible command line options to the scheme </li> *         <li> Whether the scheme can predict nominal, numeric, string,  *              date or relational class attributes. </li> *         <li> Whether the scheme can handle numeric predictor attributes </li> *         <li> Whether the scheme can handle nominal predictor attributes </li> *         <li> Whether the scheme can handle string predictor attributes </li> *         <li> Whether the scheme can handle date predictor attributes </li> *         <li> Whether the scheme can handle relational predictor attributes </li> *         <li> Whether the scheme can handle multi-instance data </li> *         <li> Whether the scheme can handle missing predictor values </li> *         <li> Whether the scheme can handle missing class values </li> *         <li> Whether a nominal scheme only handles 2 class problems </li> *         <li> Whether the scheme can handle instance weights </li> *      </ul> *    </li> *    <li> Correct functioning  *      <ul> *         <li> Correct initialisation during search (i.e. no result *              changes when search is performed repeatedly) </li> *         <li> Whether the scheme alters the data pased to it  *              (number of instances, instance order, instance weights, etc) </li> *      </ul> *    </li> *    <li> Degenerate cases  *      <ul> *         <li> building scheme with zero instances </li> *         <li> all but one predictor attribute values missing </li> *         <li> all predictor attribute values missing </li> *         <li> all but one class values missing </li> *         <li> all class values missing </li> *      </ul> *    </li> * </ul> * Running CheckAttributeSelection with the debug option set will output the  * training dataset for any failed tests.<p/> * * The <code>weka.attributeSelection.AbstractAttributeSelectionTest</code>  * uses this class to test all the schemes. Any changes here, have to be  * checked in that abstract test class, too. <p/> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -D *  Turn on debugging output.</pre> *  * <pre> -S *  Silent mode - prints nothing to stdout.</pre> *  * <pre> -N &lt;num&gt; *  The number of instances in the datasets (default 20).</pre> *  * <pre> -nominal &lt;num&gt; *  The number of nominal attributes (default 2).</pre> *  * <pre> -nominal-values &lt;num&gt; *  The number of values for nominal attributes (default 1).</pre> *  * <pre> -numeric &lt;num&gt; *  The number of numeric attributes (default 1).</pre> *  * <pre> -string &lt;num&gt; *  The number of string attributes (default 1).</pre> *  * <pre> -date &lt;num&gt; *  The number of date attributes (default 1).</pre> *  * <pre> -relational &lt;num&gt; *  The number of relational attributes (default 1).</pre> *  * <pre> -num-instances-relational &lt;num&gt; *  The number of instances in relational/bag attributes (default 10).</pre> *  * <pre> -words &lt;comma-separated-list&gt; *  The words to use in string attributes.</pre> *  * <pre> -word-separators &lt;chars&gt; *  The word separators to use in string attributes.</pre> *  * <pre> -eval name [options] *  Full name and options of the evaluator analyzed. *  eg: weka.attributeSelection.CfsSubsetEval</pre> *  * <pre> -search name [options] *  Full name and options of the search method analyzed. *  eg: weka.attributeSelection.Ranker</pre> *  * <pre> -test &lt;eval|search&gt; *  The scheme to test, either the evaluator or the search method. *  (Default: eval)</pre> *  * <pre>  * Options specific to evaluator weka.attributeSelection.CfsSubsetEval: * </pre> *  * <pre> -M *  Treat missing values as a seperate *  value.</pre> *  * <pre> -L *  Don't include locally predictive attributes.</pre> *  * <pre>  * Options specific to search method weka.attributeSelection.Ranker: * </pre> *  * <pre> -P &lt;start set&gt; *  Specify a starting set of attributes. *  Eg. 1,3,5-7.  * Any starting attributes specified are  * ignored during the ranking.</pre> *  * <pre> -T &lt;threshold&gt; *  Specify a theshold by which attributes may be discarded from the ranking.</pre> *  * <pre> -N &lt;num to select&gt; *  Specify number of attributes to select</pre> *  <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 1.5 $ * @see TestInstances */public class CheckAttributeSelection   extends CheckScheme {  /*   * Note about test methods:   * - methods return array of booleans   * - first index: success or not   * - second index: acceptable or not (e.g., Exception is OK)   *   * FracPete (fracpete at waikato dot ac dot nz)   */    /*** The evaluator to be examined */  protected ASEvaluation m_Evaluator = new CfsSubsetEval();    /*** The search method to be used */  protected ASSearch m_Search = new Ranker();    /** whether to test the evaluator (default) or the search method */  protected boolean m_TestEvaluator = true;    /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector result = new Vector();        Enumeration en = super.listOptions();    while (en.hasMoreElements())      result.addElement(en.nextElement());        result.addElement(new Option(        "\tFull name and options of the evaluator analyzed.\n"        +"\teg: weka.attributeSelection.CfsSubsetEval",        "eval", 1, "-eval name [options]"));        result.addElement(new Option(        "\tFull name and options of the search method analyzed.\n"        +"\teg: weka.attributeSelection.Ranker",        "search", 1, "-search name [options]"));        result.addElement(new Option(        "\tThe scheme to test, either the evaluator or the search method.\n"        +"\t(Default: eval)",        "test", 1, "-test <eval|search>"));        if ((m_Evaluator != null) && (m_Evaluator instanceof OptionHandler)) {      result.addElement(new Option("", "", 0,           "\nOptions specific to evaluator "          + m_Evaluator.getClass().getName()          + ":"));      Enumeration enm = ((OptionHandler) m_Evaluator).listOptions();      while (enm.hasMoreElements())        result.addElement(enm.nextElement());    }        if ((m_Search != null) && (m_Search instanceof OptionHandler)) {      result.addElement(new Option("", "", 0,           "\nOptions specific to search method "          + m_Search.getClass().getName()          + ":"));      Enumeration enm = ((OptionHandler) m_Search).listOptions();      while (enm.hasMoreElements())        result.addElement(enm.nextElement());    }        return result.elements();  }    /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -D   *  Turn on debugging output.</pre>   *    * <pre> -S   *  Silent mode - prints nothing to stdout.</pre>   *    * <pre> -N &lt;num&gt;   *  The number of instances in the datasets (default 20).</pre>   *    * <pre> -nominal &lt;num&gt;   *  The number of nominal attributes (default 2).</pre>   *    * <pre> -nominal-values &lt;num&gt;   *  The number of values for nominal attributes (default 1).</pre>   *    * <pre> -numeric &lt;num&gt;   *  The number of numeric attributes (default 1).</pre>   *    * <pre> -string &lt;num&gt;   *  The number of string attributes (default 1).</pre>   *    * <pre> -date &lt;num&gt;   *  The number of date attributes (default 1).</pre>   *    * <pre> -relational &lt;num&gt;   *  The number of relational attributes (default 1).</pre>   *    * <pre> -num-instances-relational &lt;num&gt;   *  The number of instances in relational/bag attributes (default 10).</pre>   *    * <pre> -words &lt;comma-separated-list&gt;   *  The words to use in string attributes.</pre>   *    * <pre> -word-separators &lt;chars&gt;   *  The word separators to use in string attributes.</pre>   *    * <pre> -eval name [options]   *  Full name and options of the evaluator analyzed.   *  eg: weka.attributeSelection.CfsSubsetEval</pre>   *    * <pre> -search name [options]   *  Full name and options of the search method analyzed.   *  eg: weka.attributeSelection.Ranker</pre>   *    * <pre> -test &lt;eval|search&gt;   *  The scheme to test, either the evaluator or the search method.   *  (Default: eval)</pre>   *    * <pre>    * Options specific to evaluator weka.attributeSelection.CfsSubsetEval:   * </pre>   *    * <pre> -M   *  Treat missing values as a seperate   *  value.</pre>   *    * <pre> -L   *  Don't include locally predictive attributes.</pre>   *    * <pre>    * Options specific to search method weka.attributeSelection.Ranker:   * </pre>   *    * <pre> -P &lt;start set&gt;   *  Specify a starting set of attributes.   *  Eg. 1,3,5-7.    * Any starting attributes specified are    * ignored during the ranking.</pre>   *    * <pre> -T &lt;threshold&gt;   *  Specify a theshold by which attributes may be discarded from the ranking.</pre>   *    * <pre> -N &lt;num to select&gt;   *  Specify number of attributes to select</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String      tmpStr;    String[]	tmpOptions;        super.setOptions(options);        tmpStr     = Utils.getOption("eval", options);    tmpOptions = Utils.splitOptions(tmpStr);    if (tmpOptions.length != 0) {      tmpStr        = tmpOptions[0];      tmpOptions[0] = "";      setEvaluator(	  (ASEvaluation) forName(	      "weka.attributeSelection", 	      ASEvaluation.class, 	      tmpStr, 	      tmpOptions));    }        tmpStr     = Utils.getOption("search", options);    tmpOptions = Utils.splitOptions(tmpStr);    if (tmpOptions.length != 0) {      tmpStr        = tmpOptions[0];      tmpOptions[0] = "";      setSearch(	  (ASSearch) forName(	      "weka.attributeSelection", 	      ASSearch.class, 	      tmpStr, 	      tmpOptions));    }    tmpStr = Utils.getOption("test", options);    setTestEvaluator(!tmpStr.equalsIgnoreCase("search"));  }    /**   * Gets the current settings of the CheckAttributeSelection.   *   * @return an array of strings suitable for passing to setOptions   */  public String[] getOptions() {    Vector	result;    String[]	options;    int		i;        result = new Vector();        options = super.getOptions();    for (i = 0; i < options.length; i++)      result.add(options[i]);        result.add("-eval");    if (getEvaluator() instanceof OptionHandler)      result.add(	  getEvaluator().getClass().getName() 	  + " " 	  + Utils.joinOptions(((OptionHandler) getEvaluator()).getOptions()));    else      result.add(	  getEvaluator().getClass().getName());    result.add("-search");    if (getSearch() instanceof OptionHandler)      result.add(	  getSearch().getClass().getName() 	  + " " 	  + Utils.joinOptions(((OptionHandler) getSearch()).getOptions()));    else

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -