📄 greedystepwise.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * GreedyStepwise.java * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand * */package weka.attributeSelection;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Range;import weka.core.Utils;import java.util.BitSet;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * GreedyStepwise :<br/> * <br/> * Performs a greedy forward or backward search through the space of attribute subsets. May start with no/all attributes or from an arbitrary point in the space. Stops when the addition/deletion of any remaining attributes results in a decrease in evaluation. Can also produce a ranked list of attributes by traversing the space from one side to the other and recording the order that attributes are selected.<br/> * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -C * Use conservative forward search</pre> * * <pre> -B * Use a backward search instead of a * forward one.</pre> * * <pre> -P <start set> * Specify a starting set of attributes. * Eg. 1,3,5-7.</pre> * * <pre> -R * Produce a ranked list of attributes.</pre> * * <pre> -T <threshold> * Specify a theshold by which attributes * may be discarded from the ranking. * Use in conjuction with -R</pre> * * <pre> -N <num to select> * Specify number of attributes to select</pre> * <!-- options-end --> * * @author Mark Hall * @version $Revision: 1.9 $ */public class GreedyStepwise extends ASSearch implements RankedOutputSearch, StartSetHandler, OptionHandler { /** for serialization */ static final long serialVersionUID = -6312951970168325471L; /** does the data have a class */ protected boolean m_hasClass; /** holds the class index */ protected int m_classIndex; /** number of attributes in the data */ protected int m_numAttribs; /** true if the user has requested a ranked list of attributes */ protected boolean m_rankingRequested; /** * go from one side of the search space to the other in order to generate * a ranking */ protected boolean m_doRank; /** used to indicate whether or not ranking has been performed */ protected boolean m_doneRanking; /** * A threshold by which to discard attributes---used by the * AttributeSelection module */ protected double m_threshold; /** The number of attributes to select. -1 indicates that all attributes are to be retained. Has precedence over m_threshold */ protected int m_numToSelect = -1; protected int m_calculatedNumToSelect; /** the merit of the best subset found */ protected double m_bestMerit; /** a ranked list of attribute indexes */ protected double [][] m_rankedAtts; protected int m_rankedSoFar; /** the best subset found */ protected BitSet m_best_group; protected ASEvaluation m_ASEval; protected Instances m_Instances; /** holds the start set for the search as a Range */ protected Range m_startRange; /** holds an array of starting attributes */ protected int [] m_starting; /** Use a backwards search instead of a forwards one */ protected boolean m_backward = false; /** If set then attributes will continue to be added during a forward search as long as the merit does not degrade */ protected boolean m_conservativeSelection = false; /** * Constructor */ public GreedyStepwise () { m_threshold = -Double.MAX_VALUE; m_doneRanking = false; m_startRange = new Range(); m_starting = null; resetOptions(); } /** * Returns a string describing this search method * @return a description of the search suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "GreedyStepwise :\n\nPerforms a greedy forward or backward search " +"through " +"the space of attribute subsets. May start with no/all attributes or from " +"an arbitrary point in the space. Stops when the addition/deletion of any " +"remaining attributes results in a decrease in evaluation. " +"Can also produce a ranked list of " +"attributes by traversing the space from one side to the other and " +"recording the order that attributes are selected.\n"; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String searchBackwardsTipText() { return "Search backwards rather than forwards."; } /** * Set whether to search backwards instead of forwards * * @param back true to search backwards */ public void setSearchBackwards(boolean back) { m_backward = back; if (m_backward) { setGenerateRanking(false); } } /** * Get whether to search backwards * * @return true if the search will proceed backwards */ public boolean getSearchBackwards() { return m_backward; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String thresholdTipText() { return "Set threshold by which attributes can be discarded. Default value " + "results in no attributes being discarded. Use in conjunction with " + "generateRanking"; } /** * Set the threshold by which the AttributeSelection module can discard * attributes. * @param threshold the threshold. */ public void setThreshold(double threshold) { m_threshold = threshold; } /** * Returns the threshold so that the AttributeSelection module can * discard attributes from the ranking. */ public double getThreshold() { return m_threshold; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numToSelectTipText() { return "Specify the number of attributes to retain. The default value " +"(-1) indicates that all attributes are to be retained. Use either " +"this option or a threshold to reduce the attribute set."; } /** * Specify the number of attributes to select from the ranked list * (if generating a ranking). -1 * indicates that all attributes are to be retained. * @param n the number of attributes to retain */ public void setNumToSelect(int n) { m_numToSelect = n; } /** * Gets the number of attributes to be retained. * @return the number of attributes to retain */ public int getNumToSelect() { return m_numToSelect; } /** * Gets the calculated number of attributes to retain. This is the * actual number of attributes to retain. This is the same as * getNumToSelect if the user specifies a number which is not less * than zero. Otherwise it should be the number of attributes in the * (potentially transformed) data. */ public int getCalculatedNumToSelect() { if (m_numToSelect >= 0) { m_calculatedNumToSelect = m_numToSelect; } return m_calculatedNumToSelect; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String generateRankingTipText() { return "Set to true if a ranked list is required."; } /** * Records whether the user has requested a ranked list of attributes. * @param doRank true if ranking is requested */ public void setGenerateRanking(boolean doRank) { m_rankingRequested = doRank; } /** * Gets whether ranking has been requested. This is used by the * AttributeSelection module to determine if rankedAttributes() * should be called. * @return true if ranking has been requested. */ public boolean getGenerateRanking() { return m_rankingRequested; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String startSetTipText() { return "Set the start point for the search. This is specified as a comma " +"seperated list off attribute indexes starting at 1. It can include " +"ranges. Eg. 1,2,5-9,17."; } /** * Sets a starting set of attributes for the search. It is the * search method's responsibility to report this start set (if any) * in its toString() method. * @param startSet a string containing a list of attributes (and or ranges), * eg. 1,2,6,10-15. * @throws Exception if start set can't be set. */ public void setStartSet (String startSet) throws Exception { m_startRange.setRanges(startSet); } /** * Returns a list of attributes (and or attribute ranges) as a String * @return a list of attributes (and or attribute ranges) */ public String getStartSet () { return m_startRange.getRanges(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String conservativeForwardSelectionTipText() { return "If true (and forward search is selected) then attributes " +"will continue to be added to the best subset as long as merit does " +"not degrade."; } /** * Set whether attributes should continue to be added during * a forward search as long as merit does not decrease * @param c true if atts should continue to be atted */ public void setConservativeForwardSelection(boolean c) { m_conservativeSelection = c; } /** * Gets whether conservative selection has been enabled * @return true if conservative forward selection is enabled */ public boolean getConservativeForwardSelection() { return m_conservativeSelection; } /** * Returns an enumeration describing the available options. * @return an enumeration of all the available options. **/ public Enumeration listOptions () { Vector newVector = new Vector(5); newVector.addElement(new Option("\tUse conservative forward search" ,"-C", 0, "-C")); newVector.addElement(new Option("\tUse a backward search instead of a" +"\n\tforward one." ,"-B", 0, "-B")); newVector .addElement(new Option("\tSpecify a starting set of attributes." + "\n\tEg. 1,3,5-7." ,"P",1 , "-P <start set>")); newVector.addElement(new Option("\tProduce a ranked list of attributes." ,"R",0,"-R")); newVector .addElement(new Option("\tSpecify a theshold by which attributes" + "\n\tmay be discarded from the ranking." +"\n\tUse in conjuction with -R","T",1 , "-T <threshold>")); newVector .addElement(new Option("\tSpecify number of attributes to select" ,"N",1 , "-N <num to select>")); return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -C * Use conservative forward search</pre> * * <pre> -B * Use a backward search instead of a * forward one.</pre> * * <pre> -P <start set>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -