📄 fcbfsearch.java
字号:
* Specify a starting set of attributes. * Eg. 1,3,5-7. * Any starting attributes specified are * ignored during the ranking.</pre> * * <pre> -T <threshold> * Specify a theshold by which attributes * may be discarded from the ranking.</pre> * * <pre> -N <num to select> * Specify number of attributes to select</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported * **/ public void setOptions (String[] options) throws Exception { String optionString; resetOptions(); optionString = Utils.getOption('D', options); if (optionString.length() != 0) { setGenerateDataOutput(Boolean.getBoolean(optionString)); } optionString = Utils.getOption('P', options); if (optionString.length() != 0) { setStartSet(optionString); } optionString = Utils.getOption('T', options); if (optionString.length() != 0) { Double temp; temp = Double.valueOf(optionString); setThreshold(temp.doubleValue()); } optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumToSelect(Integer.parseInt(optionString)); } } /** * Gets the current settings of ReliefFAttributeEval. * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] options = new String[8]; int current = 0; options[current++] = "-D"; options[current++] = ""+getGenerateDataOutput(); if (!(getStartSet().equals(""))) { options[current++] = "-P"; options[current++] = ""+startSetToString(); } options[current++] = "-T"; options[current++] = "" + getThreshold(); options[current++] = "-N"; options[current++] = ""+getNumToSelect(); while (current < options.length) { options[current++] = ""; } return options; } /** * converts the array of starting attributes to a string. This is * used by getOptions to return the actual attributes specified * as the starting set. This is better than using m_startRanges.getRanges() * as the same start set can be specified in different ways from the * command line---eg 1,2,3 == 1-3. This is to ensure that stuff that * is stored in a database is comparable. * @return a comma seperated list of individual attribute numbers as a String */ private String startSetToString() { StringBuffer FString = new StringBuffer(); boolean didPrint; if (m_starting == null) { return getStartSet(); } for (int i = 0; i < m_starting.length; i++) { didPrint = false; if ((m_hasClass == false) || (m_hasClass == true && i != m_classIndex)) { FString.append((m_starting[i] + 1)); didPrint = true; } if (i == (m_starting.length - 1)) { FString.append(""); } else { if (didPrint) { FString.append(","); } } } return FString.toString(); } /** * Kind of a dummy search algorithm. Calls a Attribute evaluator to * evaluate each attribute not included in the startSet and then sorts * them to produce a ranked list of attributes. * * @param ASEval the attribute evaluator to guide the search * @param data the training instances. * @return an array (not necessarily ordered) of selected attribute indexes * @throws Exception if the search can't be completed */ public int[] search (ASEvaluation ASEval, Instances data) throws Exception { int i, j; if (!(ASEval instanceof AttributeSetEvaluator)) { throw new Exception(ASEval.getClass().getName() + " is not an " + "Attribute Set evaluator!"); } m_numAttribs = data.numAttributes(); if (ASEval instanceof UnsupervisedAttributeEvaluator) { m_hasClass = false; } else { m_classIndex = data.classIndex(); if (m_classIndex >= 0) { m_hasClass = true; } else { m_hasClass = false; } } // get the transformed data and check to see if the transformer // preserves a class index if (ASEval instanceof AttributeTransformer) { data = ((AttributeTransformer)ASEval).transformedHeader(); if (m_classIndex >= 0 && data.classIndex() >= 0) { m_classIndex = data.classIndex(); m_hasClass = true; } } m_startRange.setUpper(m_numAttribs - 1); if (!(getStartSet().equals(""))) { m_starting = m_startRange.getSelection(); } int sl=0; if (m_starting != null) { sl = m_starting.length; } if ((m_starting != null) && (m_hasClass == true)) { // see if the supplied list contains the class index boolean ok = false; for (i = 0; i < sl; i++) { if (m_starting[i] == m_classIndex) { ok = true; break; } } if (ok == false) { sl++; } } else { if (m_hasClass == true) { sl++; } } m_attributeList = new int[m_numAttribs - sl]; m_attributeMerit = new double[m_numAttribs - sl]; // add in those attributes not in the starting (omit list) for (i = 0, j = 0; i < m_numAttribs; i++) { if (!inStarting(i)) { m_attributeList[j++] = i; } } this.m_asEval = ASEval; AttributeSetEvaluator ASEvaluator = (AttributeSetEvaluator)ASEval; for (i = 0; i < m_attributeList.length; i++) { m_attributeMerit[i] = ASEvaluator.evaluateAttribute(m_attributeList[i]); } double[][] tempRanked = rankedAttributes(); int[] rankedAttributes = new int[m_selectedFeatures.length]; for (i = 0; i < m_selectedFeatures.length; i++) { rankedAttributes[i] = (int)tempRanked[i][0]; } return rankedAttributes; } /** * Sorts the evaluated attribute list * * @return an array of sorted (highest eval to lowest) attribute indexes * @throws Exception of sorting can't be done. */ public double[][] rankedAttributes () throws Exception { int i, j; if (m_attributeList == null || m_attributeMerit == null) { throw new Exception("Search must be performed before a ranked " + "attribute list can be obtained"); } int[] ranked = Utils.sort(m_attributeMerit); // reverse the order of the ranked indexes double[][] bestToWorst = new double[ranked.length][2]; for (i = ranked.length - 1, j = 0; i >= 0; i--) { bestToWorst[j++][0] = ranked[i]; //alan: means in the arrary ranked, varialbe is from ranked as from small to large } // convert the indexes to attribute indexes for (i = 0; i < bestToWorst.length; i++) { int temp = ((int)bestToWorst[i][0]); bestToWorst[i][0] = m_attributeList[temp]; //for the index bestToWorst[i][1] = m_attributeMerit[temp]; //for the value of the index } if (m_numToSelect > bestToWorst.length) { throw new Exception("More attributes requested than exist in the data"); } this.FCBFElimination(bestToWorst); if (m_numToSelect <= 0) { if (m_threshold == -Double.MAX_VALUE) { m_calculatedNumToSelect = m_selectedFeatures.length; } else { determineNumToSelectFromThreshold(m_selectedFeatures); } } /* if (m_numToSelect > 0) { determineThreshFromNumToSelect(bestToWorst); } */ return m_selectedFeatures; } private void determineNumToSelectFromThreshold(double [][] ranking) { int count = 0; for (int i = 0; i < ranking.length; i++) { if (ranking[i][1] > m_threshold) { count++; } } m_calculatedNumToSelect = count; } private void determineThreshFromNumToSelect(double [][] ranking) throws Exception { if (m_numToSelect > ranking.length) { throw new Exception("More attributes requested than exist in the data"); } if (m_numToSelect == ranking.length) { return; } m_threshold = (ranking[m_numToSelect-1][1] + ranking[m_numToSelect][1]) / 2.0; } /** * returns a description of the search as a String * @return a description of the search */ public String toString () { StringBuffer BfString = new StringBuffer(); BfString.append("\tAttribute ranking.\n"); if (m_starting != null) { BfString.append("\tIgnored attributes: "); BfString.append(startSetToString()); BfString.append("\n"); } if (m_threshold != -Double.MAX_VALUE) { BfString.append("\tThreshold for discarding attributes: " + Utils.doubleToString(m_threshold,8,4)+"\n"); } BfString.append("\n\n"); BfString.append(" J || SU(j,Class) || I || SU(i,j). \n"); for (int i=0; i<m_rankedFCBF.length; i++) { BfString.append(Utils.doubleToString(m_rankedFCBF[i][0]+1,6,0)+" ; " +Utils.doubleToString(m_rankedFCBF[i][1],12,7)+" ; "); if (m_rankedFCBF[i][2] == m_rankedFCBF[i][0]) { BfString.append(" *\n"); } else { BfString.append(Utils.doubleToString(m_rankedFCBF[i][2] + 1,5,0) + " ; " + m_rankedFCBF[i][3] + "\n"); } } return BfString.toString(); } /** * Resets stuff to default values */ protected void resetOptions () { m_starting = null; m_startRange = new Range(); m_attributeList = null; m_attributeMerit = null; m_threshold = -Double.MAX_VALUE; } private boolean inStarting (int feat) { // omit the class from the evaluation if ((m_hasClass == true) && (feat == m_classIndex)) { return true; } if (m_starting == null) { return false; } for (int i = 0; i < m_starting.length; i++) { if (m_starting[i] == feat) { return true; } } return false; } private void FCBFElimination(double[][]rankedFeatures) throws Exception { int i,j; m_rankedFCBF = new double[m_attributeList.length][4]; int[] attributes = new int[1]; int[] classAtrributes = new int[1]; int numSelectedAttributes = 0; int startPoint = 0; double tempSUIJ = 0; AttributeSetEvaluator ASEvaluator = (AttributeSetEvaluator)m_asEval; for (i = 0; i < rankedFeatures.length; i++) { m_rankedFCBF[i][0] = rankedFeatures[i][0]; m_rankedFCBF[i][1] = rankedFeatures[i][1]; m_rankedFCBF[i][2] = -1; } while (startPoint < rankedFeatures.length) { if (m_rankedFCBF[startPoint][2] != -1) { startPoint++; continue; } m_rankedFCBF[startPoint][2] = m_rankedFCBF[startPoint][0]; numSelectedAttributes++; for (i = startPoint + 1; i < m_attributeList.length; i++) { if (m_rankedFCBF[i][2] != -1) { continue; } attributes[0] = (int) m_rankedFCBF[startPoint][0]; classAtrributes[0] = (int) m_rankedFCBF[i][0]; tempSUIJ = ASEvaluator.evaluateAttribute(attributes, classAtrributes); if (m_rankedFCBF[i][1] < tempSUIJ || Math.abs(tempSUIJ-m_rankedFCBF[i][1])<1E-8) { m_rankedFCBF[i][2] = m_rankedFCBF[startPoint][0]; m_rankedFCBF[i][3] = tempSUIJ; } } startPoint++; } m_selectedFeatures = new double[numSelectedAttributes][2]; for (i = 0, j = 0; i < m_attributeList.length; i++) { if (m_rankedFCBF[i][2] == m_rankedFCBF[i][0]) { m_selectedFeatures[j][0] = m_rankedFCBF[i][0]; m_selectedFeatures[j][1] = m_rankedFCBF[i][1]; j++; } } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -