⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kdtreenodesplitter.java

📁 矩阵的QR分解算法
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * KDTreeNodeSplitter.java * Copyright (C) 1999-2007 University of Waikato */package weka.core.neighboursearch.kdtrees;import weka.core.EuclideanDistance;import weka.core.Instances;import weka.core.OptionHandler;import java.io.Serializable;import java.util.Enumeration;import java.util.Vector;/** * Class that splits up a KDTreeNode. *  * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) * @version $Revision: 1.1 $ */public abstract class KDTreeNodeSplitter  implements Serializable, OptionHandler {    /** The instances that'll be used for tree construction. */  protected Instances m_Instances;    /** The distance function used for building the tree. */  protected EuclideanDistance m_EuclideanDistance;    /**    * The master index array that'll be reshuffled as nodes   * are split and the tree is constructed.    */  protected int[] m_InstList;    /**    * Stores whether if the width of a KDTree   * node is normalized or not.   */  protected boolean m_NormalizeNodeWidth;   // Constants  /** Index of min value in an array of attributes' range. */  public static final int MIN   = EuclideanDistance.R_MIN;  /** Index of max value in an array of attributes' range. */  public static final int MAX   = EuclideanDistance.R_MAX;    /** Index of width value (max-min) in an array of attributes' range. */  public static final int WIDTH = EuclideanDistance.R_WIDTH;  /**   * default constructor.   */  public KDTreeNodeSplitter() {  }    /**   * Creates a new instance of KDTreeNodeSplitter.   * @param instList Reference of the master index array.   * @param insts The set of training instances on which    * the tree is built.   * @param e The EuclideanDistance object that is used   * in tree contruction.   */  public KDTreeNodeSplitter(int[] instList, Instances insts, EuclideanDistance e) {     m_InstList = instList;    m_Instances = insts;    m_EuclideanDistance = e;  }  /**   * Returns an enumeration describing the available options.   *   * @return 		an enumeration of all the available options.   */  public Enumeration listOptions() {    return new Vector().elements();  }  /**   * Parses a given list of options.   *    * @param options 	the list of options as an array of strings   * @throws Exception 	if an option is not supported   */  public void setOptions(String[] options) throws Exception {  }  /**   * Gets the current settings of the object.   *   * @return 		an array of strings suitable for passing to setOptions   */  public String[] getOptions() {    return new String[0];  }  /**    * Checks whether an object of this class has been correctly   * initialized. Performs checks to see if all the necessary   * things (master index array, training instances, distance   * function) have been supplied or not.   * @throws Exception If the object has not been correctly    * initialized.   */  protected void correctlyInitialized() throws Exception {    if(m_Instances==null)      throw new Exception("No instances supplied.");    else if(m_InstList==null)       throw new Exception("No instance list supplied.");    else if(m_EuclideanDistance==null)      throw new Exception("No Euclidean distance function supplied.");    else if(m_Instances.numInstances() != m_InstList.length)      throw new Exception("The supplied instance list doesn't seem to match " +                          "the supplied instances");  }    /**    * Splits a node into two. After splitting two new nodes are created   * and correctly initialised. And, node.left and node.right are    * set appropriately.   * @param node The node to split.   * @param numNodesCreated The number of nodes that so far have been   * created for the tree, so that the newly created nodes are    * assigned correct/meaningful node numbers/ids.   * @param nodeRanges The attributes' range for the points inside   * the node that is to be split.   * @param universe The attributes' range for the whole    * point-space.   * @throws Exception If there is some problem in splitting the   * given node.   */  public abstract void splitNode(KDTreeNode node, int numNodesCreated,       				 double[][] nodeRanges, double[][] universe)   throws Exception;    /**   * Sets the training instances on which the tree is (or is    * to be) built.    * @param inst The training instances.   */  public void setInstances(Instances inst) {    m_Instances = inst;  }    /**    * Sets the master index array containing indices of the   * training instances. This array will be rearranged as    * the tree is built, so that each node is assigned a    * portion in this array which contain the instances    * insides the node's region.   * @param instList The master index array.   */  public void setInstanceList(int[] instList) {    m_InstList = instList;  }    /**   * Sets the EuclideanDistance object to use for    * splitting nodes.   * @param func The EuclideanDistance object.   */  public void setEuclideanDistanceFunction(EuclideanDistance func) {    m_EuclideanDistance = func;  }  /**   * Sets whether if a nodes region is normalized    * or not. If set to true then, when selecting    * the widest attribute/dimension for splitting,    * the width of each attribute/dimension,   * of the points inside the node's region, is    * divided by the width of that    * attribute/dimension for the whole point-space.   * Thus, each attribute/dimension of that node   * is normalized.   *      * @param normalize Should be true if    * normalization is required.   */  public void setNodeWidthNormalization(boolean normalize) {    m_NormalizeNodeWidth = normalize;  }    /**   * Returns the widest dimension. The width of each    * dimension (for the points inside the node) is    * normalized, if m_NormalizeNodeWidth is set to    * true.   * @param nodeRanges The attributes' range of the    * points inside the node that is to be split.   * @param universe The attributes' range for the   * whole point-space.   * @return The index of the attribute/dimension   * in which the points of the node have widest   * spread.   */  protected int widestDim(double[][] nodeRanges, double[][] universe) {    final int classIdx = m_Instances.classIndex();    double widest = 0.0;    int w = -1;    if (m_NormalizeNodeWidth) {      for (int i = 0; i < nodeRanges.length; i++) {        double newWidest = nodeRanges[i][WIDTH] / universe[i][WIDTH];        if (newWidest > widest) {          if (i == classIdx)            continue;          widest = newWidest;          w = i;        }      }    } else {      for (int i = 0; i < nodeRanges.length; i++) {        if (nodeRanges[i][WIDTH] > widest) {          if (i == classIdx)            continue;          widest = nodeRanges[i][WIDTH];          w = i;        }      }    }    return w;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -