📄 qemu.h.svn-base
字号:
#ifndef QEMU_H#define QEMU_H#include <signal.h>#include <string.h>#include "cpu.h"#undef DEBUG_REMAP#ifdef DEBUG_REMAP#include <stdlib.h>#endif /* DEBUG_REMAP */#ifdef TARGET_ABI32typedef uint32_t abi_ulong;typedef int32_t abi_long;#define TARGET_ABI_FMT_lx "%08x"#define TARGET_ABI_FMT_ld "%d"#define TARGET_ABI_FMT_lu "%u"#define TARGET_ABI_BITS 32#elsetypedef target_ulong abi_ulong;typedef target_long abi_long;#define TARGET_ABI_FMT_lx TARGET_FMT_lx#define TARGET_ABI_FMT_ld TARGET_FMT_ld#define TARGET_ABI_FMT_lu TARGET_FMT_lu#define TARGET_ABI_BITS TARGET_LONG_BITS/* for consistency, define ABI32 too */#if TARGET_ABI_BITS == 32#define TARGET_ABI32 1#endif#endif#include "thunk.h"#include "syscall_defs.h"#include "syscall.h"#include "target_signal.h"#include "gdbstub.h"/* This struct is used to hold certain information about the image. * Basically, it replicates in user space what would be certain * task_struct fields in the kernel */struct image_info { abi_ulong load_addr; abi_ulong start_code; abi_ulong end_code; abi_ulong start_data; abi_ulong end_data; abi_ulong start_brk; abi_ulong brk; abi_ulong start_mmap; abi_ulong mmap; abi_ulong rss; abi_ulong start_stack; abi_ulong entry; abi_ulong code_offset; abi_ulong data_offset; char **host_argv; int personality;};#ifdef TARGET_I386/* Information about the current linux thread */struct vm86_saved_state { uint32_t eax; /* return code */ uint32_t ebx; uint32_t ecx; uint32_t edx; uint32_t esi; uint32_t edi; uint32_t ebp; uint32_t esp; uint32_t eflags; uint32_t eip; uint16_t cs, ss, ds, es, fs, gs;};#endif#ifdef TARGET_ARM/* FPU emulator */#include "nwfpe/fpa11.h"#endif/* NOTE: we force a big alignment so that the stack stored after is aligned too */typedef struct TaskState { struct TaskState *next;#ifdef TARGET_ARM /* FPA state */ FPA11 fpa; int swi_errno;#endif#if defined(TARGET_I386) && !defined(TARGET_X86_64) abi_ulong target_v86; struct vm86_saved_state vm86_saved_regs; struct target_vm86plus_struct vm86plus; uint32_t v86flags; uint32_t v86mask;#endif#ifdef TARGET_M68K int sim_syscalls;#endif#if defined(TARGET_ARM) || defined(TARGET_M68K) /* Extra fields for semihosted binaries. */ uint32_t stack_base; uint32_t heap_base; uint32_t heap_limit;#endif int used; /* non zero if used */ struct image_info *info; uint8_t stack[0];} __attribute__((aligned(16))) TaskState;extern TaskState *first_task_state;extern const char *qemu_uname_release;/* ??? See if we can avoid exposing so much of the loader internals. *//* * MAX_ARG_PAGES defines the number of pages allocated for arguments * and envelope for the new program. 32 should suffice, this gives * a maximum env+arg of 128kB w/4KB pages! */#define MAX_ARG_PAGES 32/* * This structure is used to hold the arguments that are * used when loading binaries. */struct linux_binprm { char buf[128]; void *page[MAX_ARG_PAGES]; abi_ulong p; int fd; int e_uid, e_gid; int argc, envc; char **argv; char **envp; char * filename; /* Name of binary */};void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, abi_ulong stringp, int push_ptr);int loader_exec(const char * filename, char ** argv, char ** envp, struct target_pt_regs * regs, struct image_info *infop);int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, struct image_info * info);int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, struct image_info * info);#ifdef TARGET_HAS_ELFLOAD32int load_elf_binary_multi(struct linux_binprm *bprm, struct target_pt_regs *regs, struct image_info *info);#endifabi_long memcpy_to_target(abi_ulong dest, const void *src, unsigned long len);void target_set_brk(abi_ulong new_brk);abi_long do_brk(abi_ulong new_brk);void syscall_init(void);abi_long do_syscall(void *cpu_env, int num, abi_long arg1, abi_long arg2, abi_long arg3, abi_long arg4, abi_long arg5, abi_long arg6);void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));extern CPUState *global_env;void cpu_loop(CPUState *env);void init_paths(const char *prefix);const char *path(const char *pathname);char *target_strerror(int err);extern int loglevel;extern FILE *logfile;/* strace.c */void print_syscall(int num, abi_long arg1, abi_long arg2, abi_long arg3, abi_long arg4, abi_long arg5, abi_long arg6);void print_syscall_ret(int num, abi_long arg1);extern int do_strace;/* signal.c */void process_pending_signals(void *cpu_env);void signal_init(void);int queue_signal(int sig, target_siginfo_t *info);void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);long do_sigreturn(CPUState *env);long do_rt_sigreturn(CPUState *env);abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);#ifdef TARGET_I386/* vm86.c */void save_v86_state(CPUX86State *env);void handle_vm86_trap(CPUX86State *env, int trapno);void handle_vm86_fault(CPUX86State *env);int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);#elif defined(TARGET_SPARC64)void sparc64_set_context(CPUSPARCState *env);void sparc64_get_context(CPUSPARCState *env);#endif/* mmap.c */int target_mprotect(abi_ulong start, abi_ulong len, int prot);abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, int flags, int fd, abi_ulong offset);int target_munmap(abi_ulong start, abi_ulong len);abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, abi_ulong new_size, unsigned long flags, abi_ulong new_addr);int target_msync(abi_ulong start, abi_ulong len, int flags);/* user access */#define VERIFY_READ 0#define VERIFY_WRITE 1 /* implies read access */static inline int access_ok(int type, abi_ulong addr, abi_ulong size){ return page_check_range((target_ulong)addr, size, (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;}/* NOTE __get_user and __put_user use host pointers and don't check access. *//* These are usually used to access struct data members once the * struct has been locked - usually with lock_user_struct(). */#define __put_user(x, hptr)\({\ int size = sizeof(*hptr);\ switch(size) {\ case 1:\ *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ break;\ case 2:\ *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ break;\ case 4:\ *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ break;\ case 8:\ *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ break;\ default:\ abort();\ }\ 0;\})#define __get_user(x, hptr) \({\ int size = sizeof(*hptr);\ switch(size) {\ case 1:\ x = (typeof(*hptr))*(uint8_t *)(hptr);\ break;\ case 2:\ x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ break;\ case 4:\ x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ break;\ case 8:\ x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ break;\ default:\ /* avoid warning */\ x = 0;\ abort();\ }\ 0;\})/* put_user()/get_user() take a guest address and check access *//* These are usually used to access an atomic data type, such as an int, * that has been passed by address. These internally perform locking * and unlocking on the data type. */#define put_user(x, gaddr, target_type) \({ \ abi_ulong __gaddr = (gaddr); \ target_type *__hptr; \ abi_long __ret; \ if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ __ret = __put_user((x), __hptr); \ unlock_user(__hptr, __gaddr, sizeof(target_type)); \ } else \ __ret = -TARGET_EFAULT; \ __ret; \})#define get_user(x, gaddr, target_type) \({ \ abi_ulong __gaddr = (gaddr); \ target_type *__hptr; \ abi_long __ret; \ if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ __ret = __get_user((x), __hptr); \ unlock_user(__hptr, __gaddr, 0); \ } else { \ /* avoid warning */ \ (x) = 0; \ __ret = -TARGET_EFAULT; \ } \ __ret; \})#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)#define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)#define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)#define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)#define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)/* copy_from_user() and copy_to_user() are usually used to copy data * buffers between the target and host. These internally perform * locking/unlocking of the memory. */abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);/* Functions for accessing guest memory. The tget and tput functions read/write single values, byteswapping as neccessary. The lock_user gets a pointer to a contiguous area of guest memory, but does not perform and byteswapping. lock_user may return either a pointer to the guest memory, or a temporary buffer. *//* Lock an area of guest memory into the host. If copy is true then the host area will have the same contents as the guest. */static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy){ if (!access_ok(type, guest_addr, len)) return NULL;#ifdef DEBUG_REMAP { void *addr; addr = malloc(len); if (copy) memcpy(addr, g2h(guest_addr), len); else memset(addr, 0, len); return addr; }#else return g2h(guest_addr);#endif}/* Unlock an area of guest memory. The first LEN bytes must be flushed back to guest memory. host_ptr = NULL is explicitely allowed and does nothing. */static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, long len){#ifdef DEBUG_REMAP if (!host_ptr) return; if (host_ptr == g2h(guest_addr)) return; if (len > 0) memcpy(g2h(guest_addr), host_ptr, len); free(host_ptr);#endif}/* Return the length of a string in target memory or -TARGET_EFAULT if access error. */abi_long target_strlen(abi_ulong gaddr);/* Like lock_user but for null terminated strings. */static inline void *lock_user_string(abi_ulong guest_addr){ abi_long len; len = target_strlen(guest_addr); if (len < 0) return NULL; return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);}/* Helper macros for locking/ulocking a target struct. */#define lock_user_struct(type, host_ptr, guest_addr, copy) \ (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))#define unlock_user_struct(host_ptr, guest_addr, copy) \ unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)#endif /* QEMU_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -