📄 cpu-all.h.svn-base
字号:
CPU_DoubleU u; u.d = v; stl_be_p(ptr, u.l.upper); stl_be_p(ptr + 4, u.l.lower);}#elsestatic inline int lduw_be_p(void *ptr){ return *(uint16_t *)ptr;}static inline int ldsw_be_p(void *ptr){ return *(int16_t *)ptr;}static inline int ldl_be_p(void *ptr){ return *(uint32_t *)ptr;}static inline uint64_t ldq_be_p(void *ptr){ return *(uint64_t *)ptr;}static inline void stw_be_p(void *ptr, int v){ *(uint16_t *)ptr = v;}static inline void stl_be_p(void *ptr, int v){ *(uint32_t *)ptr = v;}static inline void stq_be_p(void *ptr, uint64_t v){ *(uint64_t *)ptr = v;}/* float access */static inline float32 ldfl_be_p(void *ptr){ return *(float32 *)ptr;}static inline float64 ldfq_be_p(void *ptr){ return *(float64 *)ptr;}static inline void stfl_be_p(void *ptr, float32 v){ *(float32 *)ptr = v;}static inline void stfq_be_p(void *ptr, float64 v){ *(float64 *)ptr = v;}#endif/* target CPU memory access functions */#if defined(TARGET_WORDS_BIGENDIAN)#define lduw_p(p) lduw_be_p(p)#define ldsw_p(p) ldsw_be_p(p)#define ldl_p(p) ldl_be_p(p)#define ldq_p(p) ldq_be_p(p)#define ldfl_p(p) ldfl_be_p(p)#define ldfq_p(p) ldfq_be_p(p)#define stw_p(p, v) stw_be_p(p, v)#define stl_p(p, v) stl_be_p(p, v)#define stq_p(p, v) stq_be_p(p, v)#define stfl_p(p, v) stfl_be_p(p, v)#define stfq_p(p, v) stfq_be_p(p, v)#else#define lduw_p(p) lduw_le_p(p)#define ldsw_p(p) ldsw_le_p(p)#define ldl_p(p) ldl_le_p(p)#define ldq_p(p) ldq_le_p(p)#define ldfl_p(p) ldfl_le_p(p)#define ldfq_p(p) ldfq_le_p(p)#define stw_p(p, v) stw_le_p(p, v)#define stl_p(p, v) stl_le_p(p, v)#define stq_p(p, v) stq_le_p(p, v)#define stfl_p(p, v) stfl_le_p(p, v)#define stfq_p(p, v) stfq_le_p(p, v)#endif/* MMU memory access macros */#if defined(CONFIG_USER_ONLY)/* On some host systems the guest address space is reserved on the host. * This allows the guest address space to be offset to a convenient location. *///#define GUEST_BASE 0x20000000#define GUEST_BASE 0/* All direct uses of g2h and h2g need to go away for usermode softmmu. */#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))#define h2g(x) ((target_ulong)(x - GUEST_BASE))#define saddr(x) g2h(x)#define laddr(x) g2h(x)#else /* !CONFIG_USER_ONLY *//* NOTE: we use double casts if pointers and target_ulong have different sizes */#define saddr(x) (uint8_t *)(long)(x)#define laddr(x) (uint8_t *)(long)(x)#endif#define ldub_raw(p) ldub_p(laddr((p)))#define ldsb_raw(p) ldsb_p(laddr((p)))#define lduw_raw(p) lduw_p(laddr((p)))#define ldsw_raw(p) ldsw_p(laddr((p)))#define ldl_raw(p) ldl_p(laddr((p)))#define ldq_raw(p) ldq_p(laddr((p)))#define ldfl_raw(p) ldfl_p(laddr((p)))#define ldfq_raw(p) ldfq_p(laddr((p)))#define stb_raw(p, v) stb_p(saddr((p)), v)#define stw_raw(p, v) stw_p(saddr((p)), v)#define stl_raw(p, v) stl_p(saddr((p)), v)#define stq_raw(p, v) stq_p(saddr((p)), v)#define stfl_raw(p, v) stfl_p(saddr((p)), v)#define stfq_raw(p, v) stfq_p(saddr((p)), v)#if defined(CONFIG_USER_ONLY)/* if user mode, no other memory access functions */#define ldub(p) ldub_raw(p)#define ldsb(p) ldsb_raw(p)#define lduw(p) lduw_raw(p)#define ldsw(p) ldsw_raw(p)#define ldl(p) ldl_raw(p)#define ldq(p) ldq_raw(p)#define ldfl(p) ldfl_raw(p)#define ldfq(p) ldfq_raw(p)#define stb(p, v) stb_raw(p, v)#define stw(p, v) stw_raw(p, v)#define stl(p, v) stl_raw(p, v)#define stq(p, v) stq_raw(p, v)#define stfl(p, v) stfl_raw(p, v)#define stfq(p, v) stfq_raw(p, v)#define ldub_code(p) ldub_raw(p)#define ldsb_code(p) ldsb_raw(p)#define lduw_code(p) lduw_raw(p)#define ldsw_code(p) ldsw_raw(p)#define ldl_code(p) ldl_raw(p)#define ldq_code(p) ldq_raw(p)#define ldub_kernel(p) ldub_raw(p)#define ldsb_kernel(p) ldsb_raw(p)#define lduw_kernel(p) lduw_raw(p)#define ldsw_kernel(p) ldsw_raw(p)#define ldl_kernel(p) ldl_raw(p)#define ldq_kernel(p) ldq_raw(p)#define ldfl_kernel(p) ldfl_raw(p)#define ldfq_kernel(p) ldfq_raw(p)#define stb_kernel(p, v) stb_raw(p, v)#define stw_kernel(p, v) stw_raw(p, v)#define stl_kernel(p, v) stl_raw(p, v)#define stq_kernel(p, v) stq_raw(p, v)#define stfl_kernel(p, v) stfl_raw(p, v)#define stfq_kernel(p, vt) stfq_raw(p, v)#endif /* defined(CONFIG_USER_ONLY) *//* page related stuff */#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)/* ??? These should be the larger of unsigned long and target_ulong. */extern unsigned long qemu_real_host_page_size;extern unsigned long qemu_host_page_bits;extern unsigned long qemu_host_page_size;extern unsigned long qemu_host_page_mask;#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)/* same as PROT_xxx */#define PAGE_READ 0x0001#define PAGE_WRITE 0x0002#define PAGE_EXEC 0x0004#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)#define PAGE_VALID 0x0008/* original state of the write flag (used when tracking self-modifying code */#define PAGE_WRITE_ORG 0x0010#define PAGE_RESERVED 0x0020void page_dump(FILE *f);int page_get_flags(target_ulong address);void page_set_flags(target_ulong start, target_ulong end, int flags);int page_check_range(target_ulong start, target_ulong len, int flags);CPUState *cpu_copy(CPUState *env);void cpu_dump_state(CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), int flags);void cpu_dump_statistics (CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), int flags);void cpu_abort(CPUState *env, const char *fmt, ...) __attribute__ ((__format__ (__printf__, 2, 3))) __attribute__ ((__noreturn__));extern CPUState *first_cpu;extern CPUState *cpu_single_env;extern int code_copy_enabled;#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */void cpu_interrupt(CPUState *s, int mask);void cpu_reset_interrupt(CPUState *env, int mask);int cpu_watchpoint_insert(CPUState *env, target_ulong addr);int cpu_watchpoint_remove(CPUState *env, target_ulong addr);int cpu_breakpoint_insert(CPUState *env, target_ulong pc);int cpu_breakpoint_remove(CPUState *env, target_ulong pc);void cpu_single_step(CPUState *env, int enabled);void cpu_reset(CPUState *s);/* Return the physical page corresponding to a virtual one. Use it only for debugging because no protection checks are done. Return -1 if no page found. */target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);#define CPU_LOG_TB_OUT_ASM (1 << 0)#define CPU_LOG_TB_IN_ASM (1 << 1)#define CPU_LOG_TB_OP (1 << 2)#define CPU_LOG_TB_OP_OPT (1 << 3)#define CPU_LOG_INT (1 << 4)#define CPU_LOG_EXEC (1 << 5)#define CPU_LOG_PCALL (1 << 6)#define CPU_LOG_IOPORT (1 << 7)#define CPU_LOG_TB_CPU (1 << 8)/* define log items */typedef struct CPULogItem { int mask; const char *name; const char *help;} CPULogItem;extern CPULogItem cpu_log_items[];void cpu_set_log(int log_flags);void cpu_set_log_filename(const char *filename);int cpu_str_to_log_mask(const char *str);/* IO ports API *//* NOTE: as these functions may be even used when there is an isa brige on non x86 targets, we always defined them */#ifndef NO_CPU_IO_DEFSvoid cpu_outb(CPUState *env, int addr, int val);void cpu_outw(CPUState *env, int addr, int val);void cpu_outl(CPUState *env, int addr, int val);int cpu_inb(CPUState *env, int addr);int cpu_inw(CPUState *env, int addr);int cpu_inl(CPUState *env, int addr);#endif/* memory API */extern int phys_ram_size;extern int phys_ram_fd;extern uint8_t *phys_ram_base;extern uint8_t *phys_ram_dirty;/* physical memory access */#define TLB_INVALID_MASK (1 << 3)#define IO_MEM_SHIFT 4#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly *//* acts like a ROM when read and like a device when written. As an exception, the write memory callback gets the ram offset instead of the physical address */#define IO_MEM_ROMD (1)#define IO_MEM_SUBPAGE (2)#define IO_MEM_SUBWIDTH (4)typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);void cpu_register_physical_memory(target_phys_addr_t start_addr, unsigned long size, unsigned long phys_offset);uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);ram_addr_t qemu_ram_alloc(unsigned int size);void qemu_ram_free(ram_addr_t addr);int cpu_register_io_memory(int io_index, CPUReadMemoryFunc **mem_read, CPUWriteMemoryFunc **mem_write, void *opaque);CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, int len, int is_write);static inline void cpu_physical_memory_read(target_phys_addr_t addr, uint8_t *buf, int len){ cpu_physical_memory_rw(addr, buf, len, 0);}static inline void cpu_physical_memory_write(target_phys_addr_t addr, const uint8_t *buf, int len){ cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);}uint32_t ldub_phys(target_phys_addr_t addr);uint32_t lduw_phys(target_phys_addr_t addr);uint32_t ldl_phys(target_phys_addr_t addr);uint64_t ldq_phys(target_phys_addr_t addr);void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);void stb_phys(target_phys_addr_t addr, uint32_t val);void stw_phys(target_phys_addr_t addr, uint32_t val);void stl_phys(target_phys_addr_t addr, uint32_t val);void stq_phys(target_phys_addr_t addr, uint64_t val);void cpu_physical_memory_write_rom(target_phys_addr_t addr, const uint8_t *buf, int len);int cpu_memory_rw_debug(CPUState *env, target_ulong addr, uint8_t *buf, int len, int is_write);#define VGA_DIRTY_FLAG 0x01#define CODE_DIRTY_FLAG 0x02/* read dirty bit (return 0 or 1) */static inline int cpu_physical_memory_is_dirty(ram_addr_t addr){ return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;}static inline int cpu_physical_memory_get_dirty(ram_addr_t addr, int dirty_flags){ return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;}static inline void cpu_physical_memory_set_dirty(ram_addr_t addr){ phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;}void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, int dirty_flags);void cpu_tlb_update_dirty(CPUState *env);void dump_exec_info(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...));/*******************************************//* host CPU ticks (if available) */#if defined(__powerpc__)static inline uint32_t get_tbl(void){ uint32_t tbl; asm volatile("mftb %0" : "=r" (tbl)); return tbl;}static inline uint32_t get_tbu(void){ uint32_t tbl; asm volatile("mftbu %0" : "=r" (tbl)); return tbl;}static inline int64_t cpu_get_real_ticks(void){ uint32_t l, h, h1; /* NOTE: we test if wrapping has occurred */ do { h = get_tbu(); l = get_tbl(); h1 = get_tbu(); } while (h != h1); return ((int64_t)h << 32) | l;}#elif defined(__i386__)static inline int64_t cpu_get_real_ticks(void){ int64_t val; asm volatile ("rdtsc" : "=A" (val)); return val;}#elif defined(__x86_64__)static inline int64_t cpu_get_real_ticks(void){ uint32_t low,high; int64_t val; asm volatile("rdtsc" : "=a" (low), "=d" (high)); val = high; val <<= 32; val |= low; return val;}#elif defined(__ia64)static inline int64_t cpu_get_real_ticks(void){ int64_t val; asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory"); return val;}#elif defined(__s390__)static inline int64_t cpu_get_real_ticks(void){ int64_t val; asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc"); return val;}#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)static inline int64_t cpu_get_real_ticks (void){#if defined(_LP64) uint64_t rval; asm volatile("rd %%tick,%0" : "=r"(rval)); return rval;#else union { uint64_t i64; struct { uint32_t high; uint32_t low; } i32; } rval; asm volatile("rd %%tick,%1; srlx %1,32,%0" : "=r"(rval.i32.high), "=r"(rval.i32.low)); return rval.i64;#endif}#elif defined(__mips__)static inline int64_t cpu_get_real_ticks(void){#if __mips_isa_rev >= 2 uint32_t count; static uint32_t cyc_per_count = 0; if (!cyc_per_count) __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count)); __asm__ __volatile__("rdhwr %1, $2" : "=r" (count)); return (int64_t)(count * cyc_per_count);#else /* FIXME */ static int64_t ticks = 0; return ticks++;#endif}#else/* The host CPU doesn't have an easily accessible cycle counter. Just return a monotonically increasing value. This will be totally wrong, but hopefully better than nothing. */static inline int64_t cpu_get_real_ticks (void){ static int64_t ticks = 0; return ticks++;}#endif/* profiling */#ifdef CONFIG_PROFILERstatic inline int64_t profile_getclock(void){ return cpu_get_real_ticks();}extern int64_t kqemu_time, kqemu_time_start;extern int64_t qemu_time, qemu_time_start;extern int64_t tlb_flush_time;extern int64_t kqemu_exec_count;extern int64_t dev_time;extern int64_t kqemu_ret_int_count;extern int64_t kqemu_ret_excp_count;extern int64_t kqemu_ret_intr_count;#endif#endif /* CPU_ALL_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -